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i 1. Functional

E(0r(s)) =[] h(x(s), y(s))dxdy

h(x(s), ¥(9))=[" [ log P,(10x+  (s), y+ g(s) I cecly

R = {object,background}

i 2. Green’'s Theorem

= For a planar region R=object u background
(P(x,y),Q(x.y)) is any vector field with continuous first
order derivatives, then
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i 2.1. Derivation
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i 3. Minimization
E(or(s))= [[ h(x y)dxdy
= [(P(x, )X +Q(x,y)y)ds
:J: L(x, Xy, y)ds

Minimizing in the steepest descent results in the
following Euler-Lagrange equations.




3.1. Euler -Lagrange
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i 4. The Motion Equation

% —h(x, Y)Y % = —h(x, y)X

Normal vector along the contour is 1= (y,—X)

Let V=(XYy) thus %:h(x,y)ﬁ

i 4. The Motion Equation

=h(x,y)n
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* Contour Representations

Level sets

i 1. Fluid Dynamics

= Predict the motion of fluids
= Flow of heat
= Mass transfers (perspiration...), etc.
= Non-rigid transformation of particles

= Mathematical formulation
= Scientific knowledge?

= Numerical implementation
= Accuracy?




i 2. Representations

= Parametric: Lagrangian approach has
problems during evolution
= Implicit: Eulerian approach.
= Marker string methods
= Volume fluid methods
= Level set methods

= Level set approach is numerically most
stable implicit representation

i 3. Two-dimensional Contour

= Closed form contour equation
= C(X,y)=0

= Parametric contour equation
= C(F(s),9(s))=0

= For instance circle:

X +y?-1=0
x= f(s)=coss .

. parametric form
y=g(s)=sins




i 3.1. Family of Contours

= Family parameter t is introduced

= Ce(X,y)=C(X,y,t)=0
= The parametric form is

= Ce(F(s,10),9(s,D))=C(x(s, 1), 1)=0
= For instance for the circle

x = f(s,t)=tcoss
y=g(s,t) =tsins @

i Contour Representations

= Explicit “parametric form”
= Explicit “marker-String method”
= Implicit “volume fluid method”

= [Implicit “level-set methods”

implicit curve ¢(a'(s,t),t)=0  surfacegradient g, =F.| Vg, |

dg(ar(s,t),t)

curve motion =0 updateg" =¢"" —At|Vg |F




The Level Set Method

= Osher-Sethian (1987)
= Earlier: Dervieux, Thomassett, (1979, 1980)

= Introduced in the area of fluid dynamics

= Vision and image segmentation
= Caselles-Catte-coll-Dibos (1992)
= Malladi-Sethian-Vermuri (1994)

= Level Set Milestones
= Faugeras-keriven (1998) stereo reconstruction
= Paragios-Deriche (1998), active regions and grouping
= Chan-Vese (1999) mumford-shah variant
= Leventon-Grimson-Faugeras-etal (2000) shape priors
= Zhao-Fedkiew-Osher (2001) computer graphics

The Level Set Method

= Let us consider in the most general case the following
form of curve propagation:
C(p,t) = F(K)N

= Addressing the problem in a higher dimension...

= The level set method represents the curve in the form
of an implicit surface:

wle,yt) R = [0,T) - R




i Level Set Representation

= Contour is represented in discrete grid
= Grid values are distances from the contour
= Contour inside is negative
= Contour outside is positive

C(x(s,1),t)=0

Level Set Representation and
i Contour Evolution
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i Evolving the Contour
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i Evolution Equations

= Evolution = Displacement in normal
direction

C(x(s,t),t)=

w at 0 take derivate of both sides

C, + VC(x(s,t),t). X(t) =0

distance in At
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i Evolution Equations
C, +VC(x(s,1),t)X'(t) =0

Divide both sides by |VC|

normal

C, +VC(x(s,t),t)
|VC| |VC|
\%/—J

normal vector i

X'(t)=0

speed

_)r—’H
C,+|VC|nx'(t)=0

—

velocity

i The Level Set Method

= Let us consider in the most general case the following

form of curve propagation:
Cp,t) = FIK)N

= Addressing the problem in a higher dimension...

= The level set method represents the curve in the form
of an implicit surface:

wla,yt) R [0,T) - R

= That is derived from the
initial contour according
to the following condition:

Cw.0) ={@w) i plo,p0) =0} oo

defines ['(t).

[€ 343

12



Overview of the Method

= The level set flow can be re-written in the following
form o+ Hipe,v,) =0,

where H is known to be the Hamiltonian.

= Determine the initial implicit function (distance
transform)
= Evolve it locally according to the level set flow
= Recover the zero-level set iso-surface (curve position)
= Re-initialize the implicit function and Go to step (1) of the loop

= Computationally expensive

= Open Questions: re-initialization...and numerical
approximations

* Implementation Details...

13



Level Set Method and
Internal Curve Properties

= The normal to the curve/surface can be determined directly from

the level set function:
r— _ Vg
[ - |V‘P|]

= The curvature can also be recovered from the implicit function, by
taking the second order derivative at the arc length

2 .
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Level Set Method and

i Internal Curve Properties

=Where we observe no variation since the
implicit function has constant “zero” values,
and given that [Cus = (zas:uss) = KN] as well
as [v=-34] one can easily prove that:

PozP — 2PayPutpy + PyyPs HOMEWORK
(92 +2)°"*
= That can also be extended to higher
dimensions

K =
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Examples: Mean/Gaussian
Curvature Flow

= Minimize the Euclidean length of a
curve/surface: .
Ci = K_,'\/

= The corresponding level set variant with
a distance transform as an implicit
function:

o = K|V

PozPr — 2pay PPy + PyyP>

K=
3/2
(‘roxz t ‘sz.') /

From theory to Practice
(Narrow Band)

= Central idea: we are interested on the motion of the zero-level set
and not for the motion of each iso-phote (grid) of the surface
= Extract the latest position

= Define a band within a certain distance
= Update the level set function gg, g&:é;ggggﬁ 50 )
1SS ST 347 475,44 | prgn .
= Check new position with respect §:\ j\{:"wﬁ‘ Feyass | [ oo
- B e 4 bdz s
the limits of the band sedesTesEatiatesice| | Ll

= Update the position of the band
regularly, and re-initialize the implicit function
= Significant decrease on the computational complexity, in
particular when implemented efficiently and can account for any
type of motion flows
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Handling the Distance
Function

= The distance function has to be frequently re-initialized...

= Extraction of the curve position & re-initialization:
= Using the marching cubes one can recover the current position of the
curve, set it to zero and then re-initialize the implicit function: the
Borgefors approach, the Fast Marching method, explicit estimation of the
distance for all image pixels...
= Preserving the curve position and refinement of the existing function

(Susman-smereka-osher:94) p

¢y, = Son [ .""r]h J (L= Vel
dr

= Modification on the level set flow such that the distance transform
property is preserved (gomes-faugeras:00)

= Extend the speed of the zero level set to all iso-photes, rather
complicated approach with limited added value?

Level Sets in imaging and
vision...
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Emigration from Fluid
Dynamics to Vision

= (Caselles-Cate-Coll-Dibos:93,Malladi-Sethian-Vemuri:94) have
proposed geometric flows to boundary extraction

¢:(;) = 9() (FaG) + Fr(2)) [Vl

= Where g(;) is a function that accounts for strong image
gradients

1
96) =TT oa, = 10))

= And the other terms are application specific...that either
expand or shrink constantly the initial curve

= Distance transforms have been used as embedding functions

Geodesic Active Regions
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