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1. Functional1. Functional
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2. Green’s Theorem2. Green’s Theorem
For a planar region  For a planar region  RR=object =object ∪∪ background        background        
((P(x,y),Q(x,yP(x,y),Q(x,y)))) is any vector field with continuous first is any vector field with continuous first 
order derivatives, thenorder derivatives, then
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2.1. Derivation2.1. Derivation
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3. Minimization3. Minimization
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Minimizing in the steepest descent results in the 
following Euler-Lagrange equations.
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3.1. Euler3.1. Euler--Lagrange Lagrange 
EquationsEquations
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3.1. Euler3.1. Euler--Lagrange Lagrange 
EquationsEquations
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4. The Motion Equation4. The Motion Equation
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4. The Motion Equation4. The Motion Equation
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Contour RepresentationsContour Representations

Level setsLevel sets

1. Fluid Dynamics1. Fluid Dynamics

Predict the motion of fluidsPredict the motion of fluids
Flow of heatFlow of heat
Mass transfers (perspiration…), etc.Mass transfers (perspiration…), etc.

NonNon--rigid transformation of particlesrigid transformation of particles
Mathematical formulationMathematical formulation

Scientific knowledge?Scientific knowledge?

Numerical implementationNumerical implementation
Accuracy?Accuracy?
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2. Representations2. Representations
Parametric:Parametric: Lagrangian approach has Lagrangian approach has 
problems during evolutionproblems during evolution
Implicit:Implicit: Eulerian approach.Eulerian approach.

Marker stringMarker string methodsmethods
Volume fluid Volume fluid methodsmethods
Level set Level set methodsmethods

Level set Level set approach is numerically most approach is numerically most 
stable implicit representationstable implicit representation

3. Two3. Two--dimensional Contourdimensional Contour
Closed form contour equationClosed form contour equation

CC((xx,,yy)=0)=0

Parametric contour equationParametric contour equation
CC((ff((ss),g(),g(ss))))=0=0

For instance For instance circlecircle::
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3.1. Family of Contours3.1. Family of Contours
Family parameter Family parameter tt is introducedis introduced

CCtt((xx,,yy)=)=CC((xx,,yy,,tt)=0)=0

The parametric form isThe parametric form is
CCtt((ff((s,ts,t),),gg((s,ts,t))))==CC((xx((ss,,tt),),tt))=0=0

For instance for the circleFor instance for the circle
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Contour RepresentationsContour Representations

Explicit “parametric form”Explicit “parametric form”
Explicit “markerExplicit “marker--String method”String method”
Implicit “volume fluid method”Implicit “volume fluid method”
Implicit “levelImplicit “level--set methods”set methods”
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The Level Set MethodThe Level Set Method
OsherOsher--Sethian (1987)Sethian (1987)

Earlier: Earlier: Dervieux, Thomassett, (1979, 1980)Dervieux, Thomassett, (1979, 1980)
Introduced in the area of fluid dynamicsIntroduced in the area of fluid dynamics
Vision and image segmentationVision and image segmentation

CasellesCaselles--CatteCatte--collcoll--Dibos (1992) Dibos (1992) 
MalladiMalladi--SethianSethian--Vermuri (1994)Vermuri (1994)

Level Set MilestonesLevel Set Milestones
FaugerasFaugeras--keriven (1998) stereo reconstructionkeriven (1998) stereo reconstruction
ParagiosParagios--Deriche (1998), active regions and grouping Deriche (1998), active regions and grouping 
ChanChan--Vese (1999) Vese (1999) mumfordmumford--shah variantshah variant
LeventonLeventon--GrimsonGrimson--FaugerasFaugeras--etaletal (2000) shape priors (2000) shape priors 
ZhaoZhao--FedkiewFedkiew--OsherOsher (2001) computer graphics(2001) computer graphics

The Level Set MethodThe Level Set Method
Let us consider in the most general case the following Let us consider in the most general case the following 
form of curve propagation:form of curve propagation:

Addressing the problem in a higher dimension…Addressing the problem in a higher dimension…

The level set method represents the curve in the form The level set method represents the curve in the form 
of an implicit surface:of an implicit surface:
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Level Set RepresentationLevel Set Representation
Contour is represented in discrete gridContour is represented in discrete grid

Grid values are distances from the contourGrid values are distances from the contour
Contour inside is negativeContour inside is negative
Contour outside is positiveContour outside is positive

-
+( ) 0),,( =ttsC x

Level Set Representation and Level Set Representation and 
Contour EvolutionContour Evolution
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Evolving the ContourEvolving the Contour

C(x,0)

C(x,t1)

C(x,t2)

C(x,0)

Evolution EquationsEvolution Equations

Evolution = Displacement in normal Evolution = Displacement in normal 
directiondirection
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Evolution EquationsEvolution Equations
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The Level Set MethodThe Level Set Method
Let us consider in the most general case the following Let us consider in the most general case the following 
form of curve propagation:form of curve propagation:

Addressing the problem in a higher dimension…Addressing the problem in a higher dimension…

The level set method represents the curve in the form The level set method represents the curve in the form 
of an implicit surface:of an implicit surface:

That is derived from theThat is derived from the
initial contour accordinginitial contour according
to the following condition:to the following condition:
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Overview of the MethodOverview of the Method
The level set flow can be reThe level set flow can be re--written in the following written in the following 
formform
where H is known to be the Hamiltonian. where H is known to be the Hamiltonian. 

Determine the initial implicit function (distance Determine the initial implicit function (distance 
transform)transform)

Evolve it locally according to the level set flow Evolve it locally according to the level set flow 
Recover the zeroRecover the zero--level set level set isoiso--surface (curve position)surface (curve position)
ReRe--initialize the implicit function and Go to step (1) of the loopinitialize the implicit function and Go to step (1) of the loop

Computationally expensiveComputationally expensive
Open Questions: reOpen Questions: re--initialization…and numerical initialization…and numerical 
approximationsapproximations

Implementation Details…Implementation Details…
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The normal to the curve/surface can be determined directly from The normal to the curve/surface can be determined directly from 
the level set function:the level set function:

The curvature can also be recovered from the implicit function, The curvature can also be recovered from the implicit function, by by 
taking the second order derivative at the arc lengthtaking the second order derivative at the arc length

Level Set Method and Level Set Method and 
Internal Curve PropertiesInternal Curve Properties

Where we observe no variation since the Where we observe no variation since the 
implicit function has constant “zero” values, implicit function has constant “zero” values, 
and given that                                     as well and given that                                     as well 
as                    one can easily prove that:as                    one can easily prove that:

That can also be extended to higher That can also be extended to higher 
dimensionsdimensions

Level Set Method and Level Set Method and 
Internal Curve PropertiesInternal Curve Properties

HOMEWORK
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Minimize the Euclidean length of a Minimize the Euclidean length of a 
curve/surface: curve/surface: 

The corresponding level set variant with The corresponding level set variant with 
a distance transform as an implicit a distance transform as an implicit 
function:function:

Examples: Mean/Gaussian Examples: Mean/Gaussian 
Curvature FlowCurvature Flow

From theory to Practice From theory to Practice 
(Narrow Band) (Narrow Band) 

Central idea: we are interested on the motion of the zeroCentral idea: we are interested on the motion of the zero--level set level set 
and not for the motion of each and not for the motion of each isoiso--photephote (grid) of the surface(grid) of the surface

Extract the latest positionExtract the latest position
Define a band within a certain distanceDefine a band within a certain distance
Update the level set function Update the level set function 
Check new position with respectCheck new position with respect
the limits of the bandthe limits of the band
Update the position of the band Update the position of the band 
regularly, and reregularly, and re--initialize the implicit functioninitialize the implicit function

Significant decrease on the computational complexity, in Significant decrease on the computational complexity, in 
particular when implemented efficiently and can account for any particular when implemented efficiently and can account for any 
type of motion flowstype of motion flows
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Handling the Distance Handling the Distance 
Function Function 

The distance function has to be frequently reThe distance function has to be frequently re--initialized…initialized…

Extraction of the curve position & reExtraction of the curve position & re--initialization:initialization:
Using the marching cubes one can recover the current position ofUsing the marching cubes one can recover the current position of the the 
curve, set it to zero and then recurve, set it to zero and then re--initialize the implicit function: initialize the implicit function: the the 
BorgeforsBorgefors approach, the Fast Marching method, explicit estimation of the approach, the Fast Marching method, explicit estimation of the 
distance for all image pixels…distance for all image pixels…

Preserving the curve position and refinement of the existing funPreserving the curve position and refinement of the existing function ction 
(Susman(Susman--smerekasmereka--osher:94)osher:94)

Modification on the level set flow such that the distance transfModification on the level set flow such that the distance transform orm 
property is preserved property is preserved (gomes(gomes--faugeras:00)faugeras:00)

Extend the speed of the zero level set to all Extend the speed of the zero level set to all isoiso--photesphotes, rather , rather 
complicated approach with limited added value?complicated approach with limited added value?

Level Sets in imaging and Level Sets in imaging and 
vision…vision…
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Emigration from Fluid Emigration from Fluid 
Dynamics to VisionDynamics to Vision

(Caselles(Caselles--CateCate--CollColl--Dibos:93,Dibos:93,MalladiMalladi--SethianSethian--Vemuri:94Vemuri:94) have ) have 
proposed geometric flows to boundary extraction proposed geometric flows to boundary extraction 

Where g(;) is a function that accounts for strong image Where g(;) is a function that accounts for strong image 
gradientsgradients

And the other terms are application specific…that either And the other terms are application specific…that either 
expand or shrink constantly the initial curveexpand or shrink constantly the initial curve

Distance transforms have been used as embedding functionsDistance transforms have been used as embedding functions

Geodesic Active RegionsGeodesic Active Regions


