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Active Contours
* a.k.a. Snakes




i Goal

= Segmentation of images
= Used in other contexts, i.e. registration

= Find a closed or open boundary
between regions

i Overview

Minimize some energy
Boundary based (BB) methods
Region based (RB) methods
Combination of BB and RB




Boundary from edge

i detection

i Does not always work

; ?




i How to improve

= Integrate information over image plane

s Use Gestalt cues
= Smoothness
= Closure

= Get operator to help!

How can we integrate
i additional information
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Humans integrate high level knowledge




i A simpler problem

Let's find the best path between
two boundary points.

i Which path is the best?




i Discrete grid

.H...l = Strength of gradient.
l‘...l = Contour should be smooth
RHEEEE  (good continuation).
.....l = Low curvature
.....l = Low change of direction of
BE 1By gradient.

@ T EE = Contour should be near edge.

i Smoothness

= Discrete Curvature: if you go from p(j-1)
to p(j) to p(j+1) how much did direction
change?
= Be careful with discrete distances.

= Change of direction of gradient from
p(-1) to p())
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i Related cost function

= Path: p(1), p(2), ... p(n).
led(p(j), p(i+D)*[g(p(j)+Af (p(i-1), p(j)]

= Where
= d(.) is distance between consecutive grid points
ie, 1 or sqrt(2).
= g(.) measures strength of gradient
= A is some parameter
« f measures smoothness, curvature.

i How to solve...

= Mapping the problem to graph

4 IO

EEEEEE ] i

T O

.....l Weight represents cost of going
from one pixel to another. Next
HE> HE term in sum.
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Dijkstra’'s shortest path
algorithm

link cost = init node costs to [, set p = seed point,
cost(p) =0
O O O = expand p as follows:
= for each of p’s neighbors q that are not
expanded

4 ° 5 « set cost(q) = min( cost(p) + cpg, cost(q) )
O 13@33 O
O O O

Dijkstra’'s shortest path
algorithm

= init node costs to [, set p = seed point,
cost(p) =0
= expand p as follows:
= for each of p’s neighbors q that are not
expanded

= set cost(q) = min( cost(p) + cpq, cost(q) )
if q's cost changed, make q point back to p

= put g onthe ACTIVE list (if not already there)
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Dijkstra’s shortest path
algorithm

= init node costs to [, set p = seed point,
cost(p) =0
expand p as follows:
= for each of p’s neighbors q that are not
expanded
= set cost(q) = min( cost(p) + cpq, cost(q) )
if q's cost changed, make q point back to p
= putgonthe ACTIVE list (if not already there)
set r = node with minimum cost on the
ACTIVE list

= repeatStep2forp=r

Intelligent scissors

Current
Frea Foint

Figure 2: Image demonstrating how the live-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move-
ment). The path of the free point is shown in white. Live-wire segments
Jfrom previous fiee point positions (1, 1), and t,) are shown in green.
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i A harder problem

= Deformable models
= Internal forces (prior)
= External forces (observation, image)
= (1973) Widrow’s “rubbermask”
= (1987) Kass, Witkin and Terzopoulos
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Two types of deformable
models

= Parametric: curve x(s), s =[0,1] is parameter,
or polyline xi, i=1,...,N, i is parameter
= Snakes (Here is some confusion: Snakes are also

called “nonparametric” in the sense that very little
prior is included )

= Active shape models (Sometimes called
“parametric” because the shape is trained on
examples using a PCA model)

s Geometric
= Level sets

i Evolution of contour

= Snake Model (1987) [Kass-Witkin-
Terzopoulos]

= Planar parameterized curve C:R>RxR
= A cost function defined along that curve

BC)] =a | B C))dp + A /  Bung(CO)p + / ' Beon(C0))dp

15



i Image Energies

Esnake = .‘.; Esnake (V(S)) dS
= Jo B (V(8))dS +[3 B page (V(S))ds + [g B, (V(s))ds

= The internal term stands for regularity/smoothness
along the curve

= The image term guides the active contour towards
the desired image properties

= The external term can be used to account for user-
defined constraints, or prior knowledge®

= The lowest potential of such a cost function refers to
an equilibrium of these terms

i The internal term

2 2

2*C
+ wstiffness(c(p))

B C9) = trencion ) 5 0) w

= The first order derivative makes the snake
behave as a membrane

= The second order derivative makes the
snake act like a thin plate
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i The image term

Eimg(c(p)) = wimeEIme(C(p)) + wedgeEedge(C(p)) + wtermEterm(C(p))

= Can guide the snake to
= ISo-photes  Ey..(C(p)) = I(C(p))
= Edges Eeage(C(p)) = [VI(C(p))|®
= Terminations

Relation between image and

i energy
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Evolution
Forces

In Summary

= Internal forces
= Holds curve together
= Prevents it from bending
= External forces
= Attract curve to edges
= Analogous to Tichonov Regularisation (see Li:
Markov Random Field, page 38)
= First two terms = prior energy,
= Third term = likelihood energy

E(X)= j; [% a(s)X? +%b(s)st + P(X(s))|ds
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i Example forces

P(x,y)=-w|V[G_ (x,y)* 1(x, )] Edges

P(x, ,V) =W ‘ (}g(X, :_1?) * ](x, y) l Iso-phote

= Start with large sigma, decrease after
some iterations.

Minimization
i Variational Calculus
x,n:[0,1] > R?
x(0) =x,
x(1) = x,
17(0) =n(1)
n'(0)=n'(1)
C(x)= .[;F(x,x',x”)ds

C(x+en)= J:F(x +en,x'+en', x"+en'")ds
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il
Clx+en)= LF (x+en,x'+en' , x'"+en'" )ds

Minimization
i Variational Calculus
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i Euler

= Euler Equation from variational calculus
(assume closed curve)

i(ce?s’s)— X )-VP(X)=0
os

= F(internal) + F(external) =0
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Evolving Contour

F*C NC )
] ('u‘ten.sz'onapQ{p} - ﬂ".siz'ffne.saapd(p)) - ,-{Ijinmg(CCp) =0

= is used to update the position of an initial curve
towards the desired image properties

= Initial the curve, using a certain number of control points as
well as a set of basic functions,

= Update the positions of the control points by solving the
above equation

= Re-parameterize the evolving contour, and continue the
process until convergence of the process...

Pros and Cons

s Pros
= Low complexity
= Easy to introduce prior knowledge
= Can account for open as well as closed structures
= A well established technique, numerous publications it works
= User Interactivity
= Cons

= Selection on the parameter space and the sampling rule
affects the final segmentation result

= Estimation of the internal geometric properties of the curve in
particular higher order derivatives

= Quite sensitive to the initial conditions,
= Changes of topology
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E‘ Results
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