Introduction To Boosting

Presentation by Alex Kachurin

h 12 2006 9@ =
L ——

Introduction to Boosting

= 3.0pen problems

— Basic vs. extended feature set
Statistical view of Boosting
Boosting variant: RealBoost
Boosting variant: LogitBoost
Other boosting variants
Hypothesis pruning

Boosting Overview

= |ntroduced by Freund and Shapire, 1996
= Classify objects (2 or more classes)
= Combine simple rules to form an ensemble

= The performance of an ensemble is better
than that of each individual rule.

= Each rule should have an error rate slightly
better than 50%

Boosting, definitions

X — a (high dimension) sample set

Y — a set of labels Yy(eX){(:),Xl}E X - {0,1}
P(X) = Pr(y(X)==1) probability

distribution

Training set Xt with the same Xec X
probability distribution as X

Weak classifiers h(X) h(X): X —»{0,1}

Produce a strong classifier:

f(x)= iatht(X)

Discrete AdaBoost algorithm

Algorithm 2.1 The AdaBoost algorithm [70].

1.
2.
3.

Input: S = {(@1,),-.., (®~, y~)}, Number of Iterations T
Initialize: 45 = I/Nforalln=1,...,] N
Do fort=1,...,T,

{2) Train classifier with respect to the weighted sample set {5,d'"'} and
obtain hypothesis hu : @ — {—1,+1}, i.e. he = £(5,d")
(b) Calculate the weighted training error =, of fi,:

N
£ = Zrﬂf}lﬁyn # helma)) .
n=1

(e) Set:
1—g

=t

1
ay = 510@,

(d) Update weights:)
d T Wlexp {—awynhu(xa)} 120,

where Z, is a normalization constant, such that =% %" = 1.

=d

. Break if sy, =0 ore > s and set T'=1¢ — L.

T
. Dutput: frx) :Z
=1

g

Teoiar

F(x)

Boosting illustrated

1st Iteration 2nd Iteration 3rd Iteration
1 1 1
5 0.5 o.&
& 06 D&
4 0.4 0.4
2 0.2 D2
0.5 1 % 0.5 1 o3 0.5 1
5Sth Iteration 10th Iteration 100th Iteration
1 - 1 1
o
s 0.8 0.8
& 0.5 D& o
P 0.4 D.a
2 0.2 0.2
0.5 1 %3 oS 1 o5 o= 1

Boosting as greedy minimization

= At each stage, the algorithm greedily
minimizes the following function:

GAB = Zdn eXp(— yn (ah[(Xn) + ft—l(xn)))
fa (%)= HZ::arhr (%)
M(x,) ==Y, (@ () + f1(x,)

M(x) defines margin over training set, same as SVM

AdaBoost for face detection

= A database of frontal faces (with minor
rotations and translations)

= Two classes - face (1) and nonface(0)

= Training set — about 5000 faces and 10000
nonfaces

= Apply AdaBoost to produce a strong
classifier with detection rate of about 98%

Integral image and Haar-like
features

= |ntegral image — sum of all pixels
above and to the left of a point (x,y)

= |ntegral image may be computed
recursively in O(n)

= Haar-like features use integral
image values.

= Basic set includes 4 types of haar-
like features

= To produce a weak classifier,
subtract a threshold from feature E|
value and use a sign() function !

A B

AdaBoost for Face Detection

e Given example images (1,41),. ... [, ¥,) where y; = 0,1 for negative and
positive examples respectively.

o Initialize weights un ; = ﬁ ?:,- for y; = 0,1 respectively, where m and [are
the number of negatives and positives respectively.

1. Normalize the weights,
W i

" 1. .
Zj_l Wi, j

so that uy; 1s a probability distribution

LTAFRFE

=]

. For each feature. j. train a classifier h; which is restricted to using
a single feature. The error is evaluated with respect to we., ¢; =
Sopwi |hy(a) — wal.

3. Choose the classifier, ;. with the lowest error «,.

4. Update the weights:

al—eq
w1, = wiiF
where ¢; = 0 if example 7; is classified correctly. ¢; = 1 otherwise. and
Hp = ——.

@ The final strong classifier 1s:

T 4w LT
1 3>, oh(x) = ?ZJ_l a7}
hiz) = { (1 otherwise

where oy = log 4+
Pt

Interpreting features

= Eyes area is generally darker
than nose area

=The forehead area should be
lighter than eyes area

Boosting cascades
G

(1)l<2/ ! 3}l<4>l' @gég;smg
P

(Reject Sub-window N
g

-

=Faster processing
=Hopefully, better performance

Cascaded AdaBoost

User selects values for f. the maximum acceptable false positive rate per layer
and d, the nunimum acceptable detection rate per layer.

User selects target overall false positive rate, Fopger-
*® P =set of positive examples

» N = set of negative examples

Fy=10:Dy = 1.0

e i=10

while F; > Frarget

— i1
—n; =0 F;, =F,_,
— while F; > f = Fi_,
* mg —n 41
Use P and NV to train a classifier with n; features using AdaBoost
= Ewvaluate current cascaded classifier on validation set to determine F';
and I);
Decrease threshold for the ¢th classifier until the current cascaded clas-
sifier has a detection rate of at least d = IJ;_; (this also affects F})
- N+
— If Fi > Flarget then evaluate the current cascaded detector on the set of
non-face images and put any false dectections into the set N

*

Interpreting results

ROC curves comparng cascaded classfier io moenotthic classifier

—— Cascaded set of 10 20-feature classifiers
— — 200 feature classifier
T T T

0s 1 1.5 2 25 3 33
false positve rate 107

AdaBoost compared to other

classification methods

T

Detector

T False detections
--\\.

|10 31 30 63 78 95 110 167 422

Viola-Jones

78.3% | 832% | 8858% | 89.8% | 90.1% 90.8% | 911% | 918% | 937%

Rowley-Baluja-Kanade

Schneiderman-Kanade

§3.0% | 56.0% | - - 59.3% 50.1% | 89.9%
B I9% - -

Roth-Yang-Ahuja

(94.8%) | -

Viola-Jones AdaBoost

Rowley-Baluja-Kanade |Neural networks

Schneiderman-Kanade | Statistics, Bayesian

Roth-Yang-Ahuja PAC learner, linear

features

AdaBoost Performance Observations

= Increasing number of training images significantly
improves detection.

= |ncreasing number of features somewhat improves
detection (5% improvement after increasing
number of features from 20 to 80)

= Time complexity:

T = O(n*N*t)

n- total number of training images

N — total number of features

t — number of features in the strong classifier

AdaBoost, open issues

= Basic vs. extended Haar feature set

1. Edze feamras OpenCV library
]:I ; 0 ’ http://sourceforge.net/
=)) () et /projects/opencvlibrary/
I Line feanmes E E l - a
(a) by o) g (=) i:: g
3. Cearer-suaround fearures
[=] <o
(a) :bf/

4. Mot uzed, but used in [3,2.4]

Statistical view of boosting

= Consider the following
Criterion: J(F) = E{(TT”F(”J}

= Theorem: the Discrete
AdaBoost method fits an
additive logistic regression by
using adaptive Newton
updates to minimize E(J(F))

AdaBoost variants: RealBoost

Real AdaBoost
1. Start with weights w; = 1/N,i=1,2,... . N.

2. Repeat form =1,2,..., M:

(a) Fit the class probability estimate p,,(z) = Pu.(y = 1|z) € [0,1]
using weights w; on the training data.

(b) Set fm(x) + &log —z—{—Llj':m:’tl} € R.

(c) Set w; « w;exp[—y;fm(zi)], i = 1,2,... N, and renormalize so
that 3>, w; = 1.

3. Output the classifier signzz;ﬁ; fm(z)]

=Better performance than discrete AdaBoost after 200 iterations
=Also minimizes E(J(F)) using Newton-like steps

AdaBoost variants: LogitBoost

GM(a) = 3" log {1+ exp (~yulahy(@a) + fima ()} -

=1

LogitBoost (2 classes)

1. Start with weights w; = 1/N i =1,2,..., N, F(z) = 0 and probability
estimates p(x;) = %

2. Repeat form =1,2,..., M:

(a) Compute the working response and weights

P y; — plzi)
' plzi) (1 — plx:))
wi = plzi)(1 - plxi)

(b) Fit the function f,,(x) by a weighted least-squares regression of
z; to x; using weights w;.
(c¢) Update F(x) + F(z) + é—fm(z} and p(z) via (28).

3. Output the classifier sign[F(z)] = sign[2M_, fin(z))

AdaBoost- other variants

FloatBoost- uses extended feature set, different target function and floating search
method to locate a minimum. Very computationally expensive.

= AdaBoost.Reg — regularize training set by limiting weights of outliers. Improves
performance in case of noisy data.

abg

Conclusion

12

