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Support Vector Machines (SVM)Support Vector Machines (SVM)

Presented by Vladimir ReillyPresented by Vladimir Reilly

BackgroundBackground

Primal Optimization ProblemPrimal Optimization Problem
Minimize     f(w),                 wЄΩ

Subject to   gi(w) ≤0 ,         I = 1,…,k

hi(w) = 0,         I = 1,…,m

f(w)    : objective function

gi(w)  : inequality constraint

hi(w)  : equality constraint
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LagrangianLagrangian

Minimize     f(w),                 wЄΩ

Subject to   gi(w) ≤0 ,         I = 1,…,k

hi(w) = 0,         I = 1,…,m

Generalized Lagrangian function is given by

L(w,α,β) = f(w) + ∑ αigi(w) + ∑βihi(w) = f(w) + αTg(w) + βTh(w)
j = 1 j = 1

α and β are the Lagrange multipliers

mk

LagrangianLagrangian

ExampleExample

Find dimensions of the sides of the box w,u,v, the volume of 
which is maximal and whose surface is equal to c

minimize           -wuv

subject   to       wu + uv + vw = c/2

L(w,u,v) = -wuv + β(wu + uv + vw – c/2)
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LagrangianLagrangian

KarushKarush--KuhnKuhn--Tucker KKT.Tucker KKT.
Given an optimization problem with convex domain Ω

Minimize     f(w),                 wЄΩ

Subject to   gi(w) ≤0 ,         I = 1,…,k

hi(w) = 0,         I = 1,…,m

If f is convex and gi, hi are affine, then w* is optimal if there 
exist α* β* such that

LagrangianLagrangian

∂L(w*,α*,β*) = 0 ∂L(w*,α*,β*) = 0
∂w ∂β

α*igi(w*) = 0, i = 1,….,k

gi(w*) ≤ 0,     i = 1,….,k

α*i >= 0,        i = 1,....,k

This implies that for active constraints α*i >=0, whereas for 
inactive constraints αi = 0
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BackgroundBackground

ggii(w(w) ≤0 is said to be active when ) ≤0 is said to be active when 
ggii(w(w) = 0, and is inactive otherwise.) = 0, and is inactive otherwise.

If the objective function and the constraints are 
linear, the problem is said to be linear.

If the objective function is quadratic, and the 
constraints are linear, the problem is said to be 
quadratic.

LagrangianLagrangian

The purpose of the The purpose of the LagrangianLagrangian is to convert is to convert 
the optimization problem from the primal the optimization problem from the primal 
form into the dual form.form into the dual form.

Dual form should result in simpler Dual form should result in simpler 
optimization conditions.  In the dual form optimization conditions.  In the dual form 
the the LagrangianLagrangian is expressed as a function is expressed as a function 
of the dual variables (the Lagrange of the dual variables (the Lagrange 
multipliers)multipliers)
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LagrangianLagrangian

Deriving the dual formDeriving the dual form

1. Construct the Lagrangian of the objective 
function

2. Take the derivative of L with respect to the 
primal variables, and set them equal to zero

3. Plug in the resulting relationships back into the 
Lagrangian and maximize.

HistoryHistory

Introduced in 1992 by Introduced in 1992 by VapnikVapnik et al.et al.

Based on Based on Vapnik’sVapnik’s structural risk structural risk 
minimization principle (statistical minimization principle (statistical 
learning theorylearning theory

A system for efficiently training A system for efficiently training 
linear learning machines.linear learning machines.
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ApplicationApplication

Pattern recognitionPattern recognition

Object classification/detectionObject classification/detection

UsageUsage

The classifier must be trained using a set of The classifier must be trained using a set of 
negative and positive examples.negative and positive examples.

The classifier “learns” the regularities in the The classifier “learns” the regularities in the 
datadata

If training was successful classifier is If training was successful classifier is 
capable of classifying an unknown example capable of classifying an unknown example 
with a high degree of accuracy.with a high degree of accuracy.
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GeometryGeometry

y

z

x

(α,β,γ)

P

P = ax + by + cz + d

D = aα + bβ + cγ + d

√a2 + b2 + c2

Linear ClassifierLinear Classifier

Binary classifier Binary classifier Task of Task of 
separating classes in feature separating classes in feature 
spacespace

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)



8

Linear Classifier cont’dLinear Classifier cont’d

Which of the linear separators is optimal? Which of the linear separators is optimal? 

MarginMargin
Distance from example to the separator is (Point to Plane DistanDistance from example to the separator is (Point to Plane Distance ce 

Equation)Equation)

Examples closest to the hyperplane are Examples closest to the hyperplane are support vectorssupport vectors..

MarginMargin 22γγ of the separator is the width of separation between of the separator is the width of separation between 
classes.classes.

w
xw br

T +
=

r

2γ
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Maximum Margin ClassificationMaximum Margin Classification

Maximizing the margin is good according to Maximizing the margin is good according to 
intuition.intuition.
Implies that only support vectors are important; Implies that only support vectors are important; 
other training examples are ignorable. other training examples are ignorable. 

Linear SVMLinear SVM

Fix the output of the decision function to 1, then for Fix the output of the decision function to 1, then for 

a training set a training set {({(xxii ,,yyii)} )} 

wTxi + b = 1    if yi = 1

wTxi + b = -1   if yi = -1
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Linear SVMLinear SVM

Compute the geometric margin of the resulting Compute the geometric margin of the resulting 
classifier given as the distance of each example from classifier given as the distance of each example from 
the NORMALIZED weight vector.the NORMALIZED weight vector.

γ = 1(<w * x+> - <w * x->) = 1(<w * x+> - <w * x->) = 
2  ||w||2 ||w||2 2||w||2

γ = 1 (1 – b) – (-1 – b)   =   1 (2-b+b)  = 1
2||w||2 2||w||2 ||w||2

Linear SVMLinear SVM

Now we can formulate the quadratic optimization Now we can formulate the quadratic optimization 
problem asproblem as

Given a linearly separable training sample S = ((x1,y1),...(xl ,yl)),

the hyperplane (w,b) that solves the optimization problem

minimizes  <w * w>

subject to  yi(<w * xi> + b) ≥ 1  i = 1,....l
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Linear SVMLinear SVM
minimizes  <w * w>
subject to  yi(<w * xi> + b) ≥ 1  i = 1,....l

Convert the problem from the primal form into the dual form

L(w,b,α) = 1<w * w> – ∑αi [yi (<w * xi> + b) – 1]
2 i = 1

l

∂w
∂L(w*,α*,β*) =   w -∑yiαixi = 0

i = 1

l

∂L(w*,α*,β*) =∑yiαi = 0
i = 1

l

∂b

w = ∑yiαixi
i = 1

l

0 = ∑yiαi
i = 1

l

Linear SVMLinear SVM

Now we plug the newly defined Now we plug the newly defined ww into the into the L(L(ww,b,b,,αα) ) 

L(w,b,α) = 1<w * w> – ∑αi [yi (<w * xi> + b) – 1]   =
2 i = 1

l

1 ∑∑yiyjαiαj<xi * xj> –∑∑yiyjαiαj<xi * xj> + ∑αi =
j = 1i = 1

ll

2 j = 1i = 1

ll

j = 1

l

w = ∑yiαixi
i = 1

∑αi - 1∑∑yiyjαiαj<xi * xj> 
2 j = 1i = 1

ll

i = 1

l
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Linear SVMLinear SVM

The dual form of the original problem isThe dual form of the original problem is

maximize W(α) = ∑αi – 1 ∑∑yiyjαiαj<xi * xj> 
j = 1i = 1

ll

i = 1

l

2

subject to         ∑yiαi = 0                     ai ≥ 0  i = 1,....,l.
i = 1

l

w* = ∑yiα*ixi
i = 1

l

The optimal weight vector given by:

realizes the maximal margin hyperplane with the geometric margin 
given by:                  1

||w||2
γ = 

Linear SVMLinear SVM

Since b was not in our dual form we Since b was not in our dual form we 
have to calculate it separately as have to calculate it separately as 
followsfollows

b = - maxyi = -1(<w* * xi>) + minyi = 1(<w* * xi>)
2
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Linear SVMLinear SVM

To satisfy the KKT conditions the following To satisfy the KKT conditions the following 
relationship must holdrelationship must hold

αi*[yi(<w* * xi> + b*) – 1] = 0,     i = 1,...,l

Which implies that only the inputs closest to the hyperplane
are selected as support vectors.  For all other inputs, α is 
zero. 

Linear SVMLinear SVM

So the final decision function becomesSo the final decision function becomes

f(x, α*,b*)   =    ∑yiαi*<xi * x> + b*

where x is the unknown testing example.

i Єsvs
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NonNon--linear classifierlinear classifier

To allow the SVM to estimate nonTo allow the SVM to estimate non--linear linear 
functions, training examples are projected functions, training examples are projected 
into higher dimensional space using the into higher dimensional space using the 
Kernel trick.Kernel trick.

In that space the examples will hopefully In that space the examples will hopefully 
be linearly separable.be linearly separable.

NonNon--linear Classifierlinear Classifier

K(x,z) = <K(x,z) = <φφ(x)*(x)*φφ(z)>  x & z (z)>  x & z ЄЄ YY
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NonNon--Linear ClassifierLinear Classifier

Actual projection and dot product Actual projection and dot product 
calculation in higher dimension is calculation in higher dimension is 
very computationally intensive.very computationally intensive.

The kernel function does the The kernel function does the 
projection implicitly!projection implicitly!

NonNon--linear classifierlinear classifier

The trick lies in the implicit projection into The trick lies in the implicit projection into 
higher dimensional space.higher dimensional space.

<x1,x2>     <z1,z2>
<x1,x2>*<z1,z2> = x1z1 + x2z2

K(x,y)  = <x*z>2 

Suppose we have a kernel function defined as 
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NonNon--Linear ClassifierLinear Classifier

Then the dot product becomesThen the dot product becomes

(<x1,x2>*<z1,z2>)2 = (x1z1 + x2z2)2 = x12z12 + 2x1z1x2z2 + x22z22

Which is equal to the dot product of

<x1x1, sqrt(2)x1x2, x2x2> * <z1z1, sqrt(2)z1z2, z2z2>

NonNon--linear Classifierlinear Classifier

The following kernels are usedThe following kernels are used
Linear: Linear: K(xi,xjK(xi,xj) = ) = xxii

TTxxjj

Polynomial Polynomial K(xK(xii,x,xjj) = () = (γγxxii
TTxxjj+r)+r)dd, , γγ > 0> 0

Radial basis function(RBF): Radial basis function(RBF): exp(exp(-- γγ||||xxii--xxjj||||22), ), γγ>0>0

Sigmoid: Sigmoid: K(xK(xii,x,xjj) = ) = tanh(tanh(γγxxii
TTxxjj + r)+ r)
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NonNon--linear Classifierlinear Classifier

When kernel function is used the When kernel function is used the 
decision function becomesdecision function becomes

f(x) = Σλjψjφj(x) + b = ΣαjyjK(x,xj) + b
j = 1

∞

j = 1

l

ψ = Σαjyj φi(xj) j = 1

l

Computer VisionComputer Vision

Object recognitionObject recognition

Positive set

125

Negative set

150
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Computer VisionComputer Vision

1.Extract features.1.Extract features.
2.Create input vectors2.Create input vectors
3.Normalize input vectors3.Normalize input vectors
4.Train classifier4.Train classifier

Computer VisionComputer Vision

Object recognitionObject recognition
96.8% detection rate

2.454% false alarm rate

Gaussian kernel LibSVM

5604neg  3873pos                           
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LibSVMLibSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm/http://www.csie.ntu.edu.tw/~cjlin/libsvm/

SVM implementation


