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* Removing Camera Motion

= Affine Transformation (Anandan)
= Projective Transformation (Mann-Pickard)




i Projective Flow
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* Clustering / Segmentation

Slide credits go to David Lowe

i Segmentation by Clustering

= Data reduction - obtain a compact
representation for interesting image
data in terms of a set of components

= Find components that belong together
(form clusters)




i Segmentation by Clustering




Segmentation by Clustering
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What is Segmentation?

= Clustering image elements that “belong together”
= Partitioning
= Divide into regions/sequences with coherent internal properties
= Grouping
= ldentify sets of coherent tokens in image
= Tokens: Whatever we need to group
= Pixels
= Features (corners, lines, etc.)
= Larger regions with uniform colour or texture
= Discrete objects (e.g., people in a crowd)
= Etc.

Slide credit: Christopher Rasmussen




Perception
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Why do these tokens belong together?
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Basic ideas of grouping in

i human vision

= Figure-ground = Gestalt properties

discrimination = relationships results

= allocating some in collection of
elements to a figure, elements (Muller-
some to ground Lyer effect)

= local bottom-up cues = A series of factors
or high level affect whether
recognition elements should be

grouped together
« Gestalt factors

i Muller-Lyer lllusion

N ’
/ N




i Grouping
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i Can you read 5 numerals?
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= Occlusion cues seem to be very important in
grouping.

i Occlusion

= Now it is easy
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i lllusion

= A curious phenomenon where you see
an object that appears to be occluding
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* Images from Steve Lehar's Gestalt papers: hitp2/fens-alumni.bu.edu/pub/slehar/Lehar. html
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Segmentation as clustering

= Cluster pixels, tokens,
etc. together
= Agglomerative
clustering
= attach to closest cluster
= repeat
= Divisive clustering
= split cluster along best

= Point-Cluster distance
= single-link clustering
= complete-link clustering
= group-average clustering

= Dendrograms

= generate a picture of
output as clustering
process continues

boundary
= repeat
Dendrogram
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Matlab Code

= rand('seed',12); L AR
= X =rand(100,2); ol

= Y = pdist(X, 'euclidean"); Zﬁ o

= Z =linkage(Y, 'single’); odf "

= [H, T] = dendrogram(2); N
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Feature Space

= Every token is identified by a set of salient visual
characteristics called features.
= One pixel wide
= Position, color, texture, motion vector
= Multiple pixels
= Size, orientation
= The choice of features and how they are quantified
implies a feature space
= Each token is represented by a point

= Token similarity is measured by distance between
points (“feature vectors”) in feature space

Slide credit: Christopher Rasmussen
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K-Means Clustering

= Initialization: Given K categories, N points in feature
space. Pick K points randomly; these are initial
cluster centers (means) m,, ..., m,. Repeat the
following:

. Assign each of the N points, X, to clusters by nearest m,
(make sure no cluster is empty)

2. Recompute mean m; of each cluster from its member
points
3. If no mean has changed more than some ¢, stop

= Effectively carries out gradient descent to minimize:

s ]

ieclusters | j eelements of i'th cluster

Slide credit: Christopher Rasmussen

Example: 3-means
Clustering

> X, from
Duda et al.

Convergence in 3 steps
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K-means clustering using
* Intensity alone and color alone

Image Clusters on intensity Clusters on color
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