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CAP6411 CAP6411 
Computer Vision SystemsComputer Vision Systems
Lecture 3Lecture 3
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RecapRecap
Object RepresentationsObject Representations

Shape of objectsShape of objects
Point RepresentationsPoint Representations
Primitive Geometric Shapes
Object silhouette and contour
Articulated shape models
Skeletal models
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RecapRecap
Object RepresentationsObject Representations

Appearance of objectsAppearance of objects
PDFsPDFs
TemplatesTemplates
MultiMulti--view appearance methodsview appearance methods

RecapRecap
Probability DistributionsProbability Distributions

Probability distributionProbability distribution
Probability densityProbability density
Independence of variablesIndependence of variables
Marginal distributionsMarginal distributions

Projection onto axisProjection onto axis

Conditional distributionsConditional distributions
BayesBayes’ rule’ rule
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RecapRecap
EigenspaceEigenspace DecompositionDecomposition

Encodes different views of an objectEncodes different views of an object
Selection of few eigenvectors is enoughSelection of few eigenvectors is enough
Highlights differences within the classHighlights differences within the class

Visual FeaturesVisual Features
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PropertiesProperties

UniquenessUniqueness
Related to the object representationRelated to the object representation

Color for histogram based representationColor for histogram based representation
Edges for contour based representationEdges for contour based representation

Combination of features improve Combination of features improve 
performance of vision algorithmsperformance of vision algorithms

Typical Visual FeaturesTypical Visual Features

ColorColor
EdgesEdges
Optical flowOptical flow
TextureTexture
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Color FeatureColor Feature

Multiple bandsMultiple bands
RGB, HSV, etc.RGB, HSV, etc.

Single bandSingle band
BinaryBinary
Gray scale, heat index, etc.Gray scale, heat index, etc.

RGB Color SpaceRGB Color Space
(Red, Green, Blue)(Red, Green, Blue)

Color cubeColor cube
Range from 0Range from 0--255255
Any color is specified by r, g, b Any color is specified by r, g, b 
triple.triple.
The diagonal line of the cube The diagonal line of the cube 
represents all the graysrepresents all the grays
Simply a linear scaling of a unit Simply a linear scaling of a unit 
color cube color cube 
Lies within our perceptual spaceLies within our perceptual space
Represents fewer colors than we Represents fewer colors than we 
can see.can see.
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RGBRGB

HSV Color SpaceHSV Color Space
(Hue, Saturation, Value)(Hue, Saturation, Value)

A common alternative to RGBA common alternative to RGB
Hue is the color typeHue is the color type

Ranges from 0Ranges from 0 360360

Saturation is amount of gray in colorSaturation is amount of gray in color
Ranges from 0Ranges from 0 100%100%

Value is the brightnessValue is the brightness
Ranges from 0Ranges from 0 100%100%

),,(min
),,(max

BGRMIN
BGRMAX

=
=
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Single Band ImagesSingle Band Images
BinaryBinary

Two possible intensity valuesTwo possible intensity values
Produced by Produced by thresholdingthresholding
Used in shape analysisUsed in shape analysis

Elongation, area, compactness, Elongation, area, compactness, 
circumference, etc.circumference, etc.

Histogram of a binary imageHistogram of a binary image

Single Band ImagesSingle Band Images
Gray Level ImageGray Level Image

Only colors are shades of grayOnly colors are shades of gray
Less storage spaceLess storage space
Are sufficient to many tasksAre sufficient to many tasks

Many lowMany low--level vision algorithms level vision algorithms 
use gray level imagesuse gray level images

RGBRGB
toto

GrayscaleGrayscale

RGBRGB
toto

HSVHSV
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Single Band ImagesSingle Band Images
Heat IndexHeat Index

Expensive sensorsExpensive sensors
Used in militaryUsed in military
BlackBlack ColdCold
WhiteWhite HotHot

Edge FeatureEdge Feature

Discontinuity of intensities in the imageDiscontinuity of intensities in the image
Edge modelsEdge models

StepStep
RoofRoof
RampRamp
SpikeSpike

Step Ramp

Roof Spike
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Less sensitive to illumination changesLess sensitive to illumination changes
Commonly used in contour based Commonly used in contour based 
image representationimage representation
Extracted from gray level imagesExtracted from gray level images
Used in context of:Used in context of:

Object recognitionObject recognition
TrackingTracking
Image retrievalImage retrieval

Edge FeatureEdge Feature

Bowyer, K., Bowyer, K., KranenburgKranenburg, C., and Dougherty, S. 2001. Edge detector evaluation using emp, C., and Dougherty, S. 2001. Edge detector evaluation using empirical ROC curve. CVIU 10, 77irical ROC curve. CVIU 10, 77––103.103.

SobelSobel Edge DetectorEdge Detector

Sobel’sSobel’s
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Canny Edge DetectorCanny Edge Detector

Image

gx(x,y) Gradient
magnitude

gy(x,y) Gradient
direction

Non-maximum
suppression

Hysteresis
thresholding

Optical Flow FeatureOptical Flow Feature

Dense field of displacement vectorsDense field of displacement vectors
Translation of each pixel in a regionTranslation of each pixel in a region

Computed from a set of framesComputed from a set of frames
Computed from brightness constancy Computed from brightness constancy 
constraintconstraint

Intensity of a moving pixel does not change Intensity of a moving pixel does not change 
overover--timetime

),,(),,( ttyyxxItyxI ∆+∆+∆+=
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Common UsesCommon Uses

Motion based segmentationMotion based segmentation
Object trackingObject tracking
Video indexing and retrievalVideo indexing and retrieval
Correction of camera jitterCorrection of camera jitter
Image alignmentImage alignment
Structure from motionStructure from motion
Video compressionVideo compression

Optical FlowOptical Flow

Flow vector in image space (2D)Flow vector in image space (2D)
Taylor series expansion of right side around Taylor series expansion of right side around ∆∆tt
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Optical FlowOptical Flow
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y

t

y

x

I
I

I
Iuv += Equation of a line in (Equation of a line in (uu,,vv) space) space

Computing Optical FlowComputing Optical Flow
Lucas & Lucas & KanadeKanade

Line fittingLine fitting
Define an energy functionalDefine an energy functional
Take derivatives equate it to 0Take derivatives equate it to 0
Rearrange and construct an observation matrixRearrange and construct an observation matrix
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Computing Optical FlowComputing Optical Flow
Lucas & Lucas & KanadeKanade
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Computing Optical FlowComputing Optical Flow
Lucas & Lucas & KanadeKanade
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Texture FeatureTexture Feature

Measure of the intensity variation of a Measure of the intensity variation of a 
surface surface 
Quantifies smoothness and regularity. Quantifies smoothness and regularity. 
Requires a processing step to generate Requires a processing step to generate 
the descriptors.the descriptors.
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Texture MeasuresTexture Measures
GLCM GLCM (Gray level Co(Gray level Co--occurrence Matrices)occurrence Matrices)

Law’s Texture Energy MeasuresLaw’s Texture Energy Measures
WaveletsWavelets
Steerable PyramidsSteerable Pyramids

GLCMsGLCMs

2D histogram of image intensities2D histogram of image intensities
P(i,j,d,P(i,j,d,θθ)): Count of occurrence of gray : Count of occurrence of gray 
level level ii with with jj at distance at distance dd and in and in 
direction direction θθ..
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GLCMsGLCMs

5 0 5 1 5 2 5 0

5 3 5 1 5 1 5 2

5 1 5 0 5 1 5 2

5 2 5 3 5 3 5 2

Intensity image patchIntensity image patch

5 0 5 1 5 2 5 3

5 0 0 2 0 0

5 1 1 1 3 0

5 2 1 0 0 1

5 3 0 1 1 1

P(d,θ), d=1, θ=0o

GLCMsGLCMs

Too many parametersToo many parameters
Computationally ExpensiveComputationally Expensive
Not suitable for coarse textureNot suitable for coarse texture
Susceptible to noiseSusceptible to noise
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Law’s Texture MeasuresLaw’s Texture Measures

Feature Extraction scheme based on Feature Extraction scheme based on 
gradient operatorsgradient operators
25 Masks by convolution of 5 125 Masks by convolution of 5 1--D D 
vectorsvectors

LevelLevel L5 = [ 1    4   6   4   1]L5 = [ 1    4   6   4   1]
EdgeEdge E5 = [E5 = [--1  1  --2   0   2   1]2   0   2   1]
SpotSpot S5 = [S5 = [--1   0    2   0  1   0    2   0  --1]1]
WaveWave W5= [W5= [--1   2   0   1   2   0   --2   1]  2   1]  
Ripple  R5= [ 1  Ripple  R5= [ 1  --4    6  4    6  --4   1]4   1]

Law’s Texture Energy Law’s Texture Energy 
MeasuresMeasures
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Wavelet AnalysisWavelet Analysis

Tool for multiTool for multi--resolution analysisresolution analysis
Provides localization in both spatial and Provides localization in both spatial and 
frequency domainfrequency domain
Every decomposition contains Every decomposition contains 
information of a specified scale and information of a specified scale and 
orientationorientation

Wavelet AnalysisWavelet Analysis

Wavelet transform decomposes Wavelet transform decomposes f(xf(x))
onto a basis of wavelet functions:onto a basis of wavelet functions:
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Wavelet AnalysisWavelet Analysis
22--D Wavelet decomposition is obtained by D Wavelet decomposition is obtained by 
separable filter bank.separable filter bank.

image

Horizontal 
Low

Horizontal
High

2

2

Vert. High

Vert. Low

Vert. High

Vert. Low

2

2

2

2

HH

LL

LH

HL

(Recursive)

Wavelet AnalysisWavelet Analysis

HH

LH

HL
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GaborGabor WaveletsWavelets
An effective strategy for extracting textural An effective strategy for extracting textural 
information from imagesinformation from images
optimal filtersoptimal filters11 both for both for 

orientation and spatial frequency contentorientation and spatial frequency content
22--D positionD position

[1] Daugman, ``Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by 
two-dimensional visual cortical filters," Journal of the Optical Society of America A, vol. 2, pp. 1160-1169, 1985.

GaborGabor FiltersFilters
Two dimensional Gabor filters over the 
image domain (x,y) have the following 
functional form

( ) ( ) ( )[ ] ( ) ( )[ ]0000
22

0
22

0 2, yyvxxujyyxx eeyxG −+−−−+−−= πβαπ

(x0,y0) specify position in the image
(α,β) specify effective width and length
(u0,v0) specify modulation
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GaborGabor FiltersFilters

Real Part of a gabor filter

GaborGabor Filters with different Filters with different 
orientationsorientations

( ) ( )[ ]( )002cos)(, xxuxgyxG −= π ( ) ( ) ( )[ ]( )002cos, yyvxgyxG −= π

( ) ( ) ( ) ( )[ ]( )00002cos, yyvxxuxgyxG −+−= π ( ) ( ) ( ) ( )[ ]( )00002cos, yyvxxuxgyxG −−−= π
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Steerable PyramidsSteerable Pyramids

Linear multiLinear multi--scale, multiscale, multi--orientation orientation 
image decompositionimage decomposition
Basis functions are directional derivative Basis functions are directional derivative 
operators in different sizes and operators in different sizes and 
orientationsorientations
Type of overType of over--complete wavelet complete wavelet 
transformtransform
Steerable orientation decompositionSteerable orientation decomposition

Steerable PyramidsSteerable Pyramids
Image High Pass Filter

Low Pass 1 Band Pass 1

Band Pass 2

Band Pass 3

Band Pass n

Low Pass 2

(Recursive)
2

M
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Steerable PyramidsSteerable Pyramids

Texture MeasuresTexture Measures

EnergyEnergy

EntropyEntropy
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Texture MeasuresTexture Measures

KurtosisKurtosis

SkewSkew

VarianceVariance
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