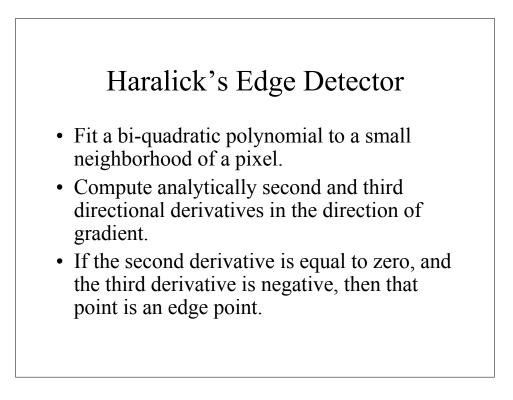
Lecture-8 Haralick's Edge Detector



Haralick's Edge Detector

Bi-cubic polynomial:

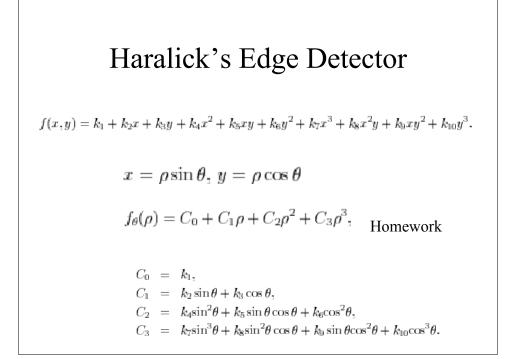
 $f(x,y) = k_1 + k_2 x + k_3 y + k_4 x^2 + k_5 x y + k_6 y^2 + k_7 x^3 + k_8 x^2 y + k_9 x y^2 + k_{10} y^3.$

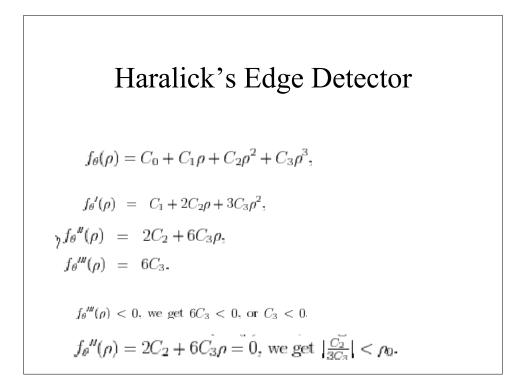
Gradient angle, defined with positive y-axis: $\sin \theta = \frac{k_2}{\sqrt{k_2^2 + k_3^2}},$ $\cos \theta = \frac{k_3}{\sqrt{k_2^2 + k_3^2}}.$ Homework

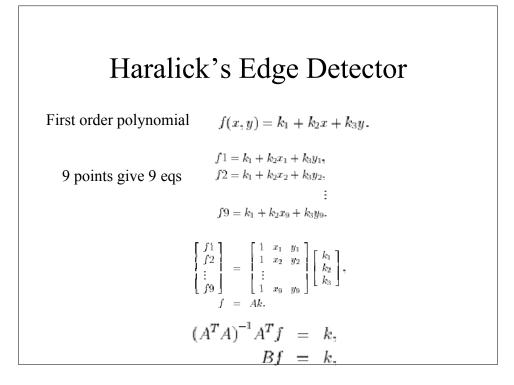
Directional derivative $f'_{\theta} = \frac{\partial f}{\partial x} \cos\theta + \frac{\partial f}{\partial y} \sin\theta$.

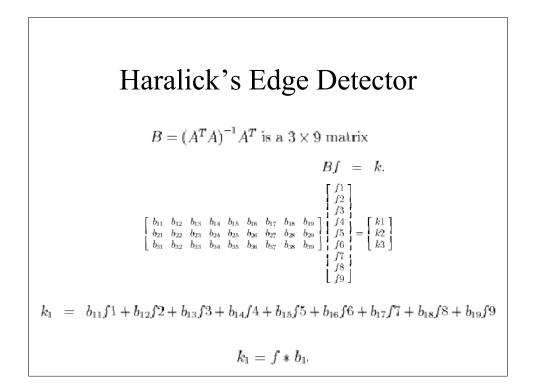
Gradient angle, defined with positive x-axis:

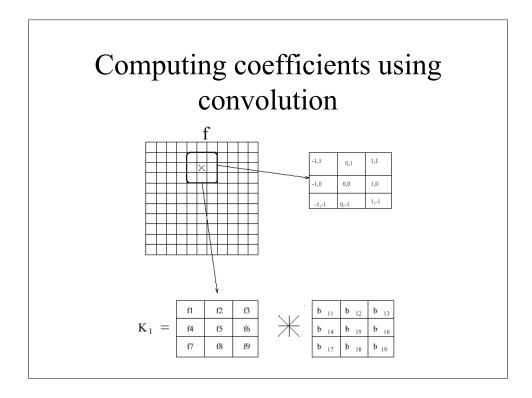
Haralick's Edge Detector $f_{\theta}' = \frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta.$ $\begin{array}{lll} f'_{\theta}(x,y) &=& \displaystyle \frac{\partial f}{\partial x}\sin\theta + \frac{\partial f}{\partial y}\cos\theta, \\ f''_{\theta}(x,y) &=& \displaystyle \frac{\partial^2 f}{\partial x^2} {\rm sin}^2\theta + \frac{\partial^2 f}{\partial y^2} {\rm cos}^2\theta + 2 \frac{\partial^2 f}{\partial x \partial y} {\rm cos}\theta \sin\theta. \end{array}$

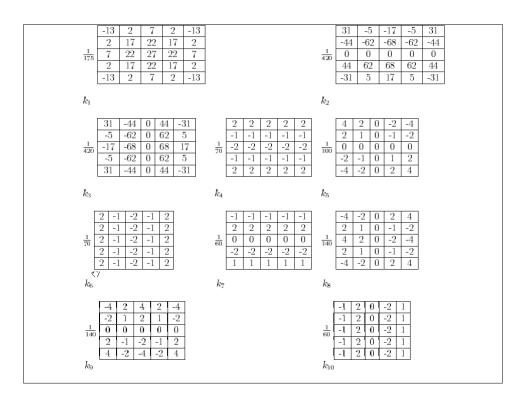












Haralick's Edge Detector

- 1. Find $k_1, k_2, k_3, \ldots, k_{10}$ using least square fit, or masks given in Figure 2.8.
 - 2. Compute θ , $\sin \theta$, $\cos \theta$.
 - 3. Compute C_2, C_3 .
 - 4. If $C_3 < 0$ and $\left|\frac{C_2}{3C_2}\right| < \rho_0$ then that point is an edge point.

Figure 2.9: The steps in Haralick's Edge Detector.

Comparison of Three Edge Detectors

- Marr-Hildreth
 - Gaussian filter
 - Zerocrossings in Laplacian
- Canny
 - Gaussian filter
 - Maxima in gradient magnitude
- Haralick
 - Smoothing through bi-cubic polynomial
 - Zerocrossings in the second directional derivative, and negative third derivative

Laplacian and the second Directional
Derivative and the direction of Gradient

$$\Delta^2 f = f_{xx} + f_{yy} = f_{\theta}^{"} + f_{n}^{"}$$

$$f_{\theta}^{'} = f_x \cos\theta + f_y \sin\theta$$

$$f_{\theta}^{"} = (f_{xx} \cos\theta + f_{yx} \sin\theta) \cos\theta + (f_{xy} \cos\theta + f_{yy} \sin\theta) \sin\theta$$

$$f_{\theta}^{"} = f_{xx} \cos^2\theta + f_{yy} \sin^2\theta + 2f_{xy} \cos\theta \sin\theta$$

$$f_{n}^{"} = f_{xx} \cos^2 n + f_{yy} \sin^2 n + 2f_{xy} \cos n \sin n$$

$$f_{n}^{"} = f_{xx} \cos^2(\theta + 90) + f_{yy} \sin^2(\theta + 90) + 2f_{xy} \cos(\theta + 90) \sin(\theta + 90)$$

$$f_{n}^{"} = f_{xx} \sin^2\theta + f_{yy} \cos^2\theta - 2f_{xy} \cos\theta \sin\theta$$

Laplacian and the second Directional Derivative and the direction of Gradient $f_{\theta}^{"} = f_{xx} \cos^{2} \theta + f_{yy} \sin^{2} \theta + 2f_{xy} \cos \theta \sin \theta$ $f_{n}^{"} = f_{xx} \sin^{2} \theta + f_{yy} \cos^{2} \theta - 2f_{xy} \cos \theta \sin \theta$ $\Delta^{2} f = f_{xx} + f_{yy} = f_{\theta}^{"} + f_{n}^{"}$

Scales

- What should be sigma value for Canny and LG edge detection?
 - Marr-Hildreth:
- If use multiple sigma values (scales), how do you combine multiple edge maps?
 - Spatial Coincidence assumption:
 - Zerocrossings that coincide over several scales are physically significant.

