Derivatives and Averages

Lecture-6

Derivatives and Averages

 Derivative: Rate of change of some quantity
— Speed is a rate of change of a distance
— Acceleration is a rate of change of speed

» Average (Mean)

— The numerical result obtained by dividing the
sum of two or more quantities by the number
of quantities
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Second Derivative
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Discrete Derivative
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Discrete Derivative

d_ = f(x) - f(x - 1) — f’(x) Left difference
X
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a = f(x) - f(x + 1) = f (X) Right difference
df : ,
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Example
F(x)=10 10 10 10 20 20 20
Left F*(x)=0 o 0 0 10 0 0
difference F’(x)=0 0 0 0 10 -10 0
left difference

right difference

-1 0 1 center difference




Derivatives in Two Dimensions
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Derivatives of an Image
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Derivatives of an Image
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Convolution

fiwLy+lp  fiey+|y

fixtlfp+l)

felyy | fxy

yolf  aelg-Ly

hixy=fix- Ly+Ligt-

L3

LU g i 0, D it Ly + Ligd L1

B Lyig- L0 im0, 0mfic+ Ly i 10w

- .y y
B Ly Lig- Ly Dby Dgi0,- T+ Ly- Ligg L- 1

gLl | gl | gl
Lay 00 [gLm | —— h(X’y)
11 L&l




Convolution (contd)
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Weighted Average
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2-D Gaussian
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2-D Gaussian

Gaussian

» Most natural phenomenon can be modeled
by Gaussian.

» Take a bunch of random variables of any
distribution, find the mean, the mean will
approach to Gaussian distribution.

» Gaussian is very smooth function, it has
infinite no of derivatives.
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Gaussian

Fourier Transform of Gaussian is Gaussian.

If you convolve Gaussian with itself, it is
again Gaussian.

There are cells in human brain which
perform Gaussian filtering.

— Laplacian of Gaussian edge detector

Carl F. Gauss

Born to a peasant family in a small town in
Germany.

Learned counting before he could talk.

Contributed to Physics, Mathematics,
Astronomy,...

Discovered most methods in modern
mathematics, when he was a teenager.
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Carl F. Gauss

* Some contributions
— Gaussian elimination for solving linear systems

— Gauss-Seidel method for solving sparse
systems

— Gaussian curvature

— Gaussian qudrature

Noise

 Image contains noise due to
— Lighting variations
— Lens de-focus
— Camera electronics
— Surface reflectance
* Remove noise
— Averaging
— Weighted averaging




Example

F(x)= 10 10 10 10 20 20 20

n(x)= 0 5 0 0 3 0 0

F~(x)= 10 15 10 10 23 20 20

H(x)= 10 12 12 14 17 21 20
Edge Detection

 Find edges in the image

 Edges are locations where intensity changes

the most

» Edges can be used to represent a shape of an

object
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Edge Detection

Images contain noise, need to remove noise by
averaging, or weighted averaging

To detect edged compute derivative of an image
(gradient)

If gradient magnitude is high at pixel, intensity
change i1s maximum, that is an edge pixel
If Laplacian (second derivative) is zero then at that

point the first derivative is maximum, that point is
an edge pixel.

Edge Detectors

Prewit

Sobel

Roberts

Marr-Hildreth (Laplacian of Gaussian)
Canny (Gradient of Gaussian)
Haralick (Facet Model)
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Derivatives of an Image
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Laplacian of Gaussian

» Filter the image by weighted averaging
(Gaussian)

 Find Laplacian of image
* Detect zero-crossings

AN f = f.+f, =Laplacian
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Canny Edge Detector

* Filter the image with Gaussian
* Find the gradient magnitude
» Edges are maxima of gradient magnitude

Haralick’s facet Model based
Edge detector

» Fit a bi-cubic polynomial to a local
neighborhood of a pixel

 If the second derivative is zero, and the
third derivative is negative, then that point
is an edge point.
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