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Derivatives and Averages

Lecture-6

Derivatives and Averages

• Derivative: Rate of change of some quantity
– Speed is a rate of change of a distance

– Acceleration is a rate of change of speed

• Average (Mean)
– The numerical result obtained by dividing the

sum of two or more quantities  by the number
of quantities
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Derivative
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Second Derivative
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Discrete Derivative
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Example

F(x)=10 10 10 10 20 20 20
F’(x)=0 0 0 0 10 0 0
F’’(x)=0 0 0 0 10 -10 0

-1      1            left difference
1  -1            right difference
-1     0     1      center difference

Left 
difference
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Derivatives in Two Dimensions
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Derivatives of an Image
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Derivatives of an Image
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Convolution (contd)
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Weighted Average
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2-D Gaussian
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2-D Gaussian

Gaussian

• Most natural phenomenon can be modeled
by Gaussian.

• Take a bunch of random variables of any
distribution, find the mean, the mean will
approach to Gaussian distribution.

• Gaussian is very smooth function, it has
infinite no of derivatives.
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Gaussian

• Fourier Transform of Gaussian is Gaussian.

• If you convolve Gaussian with itself, it is
again Gaussian.

• There are cells in human brain which
perform Gaussian filtering.
– Laplacian of Gaussian edge detector

Carl F. Gauss

• Born to a peasant family in a small town in
Germany.

• Learned counting before he could talk.

• Contributed to Physics, Mathematics,
Astronomy,…

• Discovered most  methods in modern
mathematics, when he was a teenager.
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Carl F. Gauss

• Some contributions
– Gaussian elimination for solving linear systems

– Gauss-Seidel method for solving sparse
systems

– Gaussian curvature

– Gaussian qudrature

Noise

• Image contains noise due to
– Lighting variations
– Lens de-focus
– Camera electronics
– Surface reflectance

• Remove noise
– Averaging
– Weighted averaging
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Example

F(x)= 10 10 10 10 20 20 20
n(x)= 0 5 0 0 3 0 0
F~(x)= 10 15 10 10 23 20 20
H(x)= 10 12 12 14 17 21 20

Edge Detection

• Find edges in the image

• Edges are locations where intensity changes
the most

• Edges can be used to represent a shape of an
object
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Edge Detection

• Images contain noise, need to remove noise by
averaging, or weighted averaging

• To detect edged compute derivative of an image
(gradient)

• If gradient magnitude is high at pixel, intensity
change is maximum, that is an edge pixel

• If Laplacian (second derivative) is zero then at that
point the first derivative is maximum, that point is
an edge pixel.

Edge Detectors

• Prewit

• Sobel

• Roberts

• Marr-Hildreth (Laplacian of Gaussian)

• Canny (Gradient of Gaussian)

• Haralick (Facet Model)
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Derivatives of an Image
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Laplacian of Gaussian

• Filter the image by weighted averaging
(Gaussian)

• Find Laplacian of image

• Detect zero-crossings

Laplacian2 =+=D yyxx fff
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Canny Edge Detector

• Filter the image with Gaussian

• Find the gradient magnitude

• Edges are maxima of gradient magnitude

Haralick’s facet Model based
Edge detector

• Fit a bi-cubic polynomial to a local
neighborhood of a pixel

• If the second derivative is zero, and the
third derivative is negative, then that point
is an edge point.


