Derivatives and Averages

Lecture-6

Derivatives and Averages

- Derivative: Rate of change of some quantity
 - Speed is a rate of change of a distance
 - Acceleration is a rate of change of speed
- Average (Mean)
 - The numerical result obtained by dividing the sum of two or more quantities by the number of quantities

Discrete Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x - 1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x - 1) = f'(x)$$
(Finite Difference)

Discrete Derivative

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x) \quad \text{Left difference}$$

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x) \quad \text{Right difference}$$

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x) \quad \text{Center difference}$$

Derivatives of an Image													
Deriv & ave	ative rage		$ \begin{array}{ccccc} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \\ & f_x \end{array} $			$ \begin{array}{ccccc} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ & f_y \end{array} $				Prewit			
I(x, y) =	10 10 10 10 10	10 10 10 10 10	20 20 20 20 20 20	20 20 20 20 20 20	20 ⁻ 20 20 20 20 20	1	<i>x</i> =	0 0 0 0 0	0 30 30 30 0	0 30 30 30 0	0 0 0 0	0 0 0 0 0 0	

Gaussian

- Fourier Transform of Gaussian is Gaussian.
- If you convolve Gaussian with itself, it is again Gaussian.
- There are cells in human brain which perform Gaussian filtering.
 - Laplacian of Gaussian edge detector

Carl F. Gauss

- Born to a peasant family in a small town in Germany.
- Learned counting before he could talk.
- Contributed to Physics, Mathematics, Astronomy,...
- Discovered most methods in modern mathematics, when he was a teenager.

Carl F. Gauss

• Some contributions

- Gaussian elimination for solving linear systems
- Gauss-Seidel method for solving sparse systems
- Gaussian curvature
- Gaussian qudrature

Example												
F(x)=	10	10	10	10	20	20	20					
n(x)=	0	5	0	0	3	0	0					
$F\sim(x)=$	10	15	10	10	23	20	20					
H(x)=	10	12	12	14	17	21	20					

Edge Detection

- Images contain noise, need to remove noise by averaging, or weighted averaging
- To detect edged compute derivative of an image (gradient)
- If gradient magnitude is high at pixel, intensity change is maximum, that is an edge pixel
- If Laplacian (second derivative) is zero then at that point the first derivative is maximum, that point is an edge pixel.

Canny Edge Detector

- Filter the image with Gaussian
- Find the gradient magnitude
- Edges are maxima of gradient magnitude

Haralick's facet Model based Edge detector

- Fit a bi-cubic polynomial to a local neighborhood of a pixel
- If the second derivative is zero, and the third derivative is negative, then that point is an edge point.