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EnVisionVR: A Scene Interpretation Tool for Visual
Accessibility in Virtual Reality

Junlong Chen, Rosella P. Galindo Esparza, Vanja Garaj, Per Ola Kristensson, John Dudley

Abstract—Effective visual accessibility in Virtual Reality (VR)
is crucial for Blind and Low Vision (BLV) users. However,
designing visual accessibility systems is challenging due to the
complexity of 3D VR environments and the need for tech-
niques that can be easily retrofitted into existing applications.
While prior work has studied how to enhance or translate
visual information, the advancement of Vision Language Models
(VLMs) provides an exciting opportunity to advance the scene
interpretation capability of current systems. This paper presents
ENVISIONVR, an accessibility tool for VR scene interpretation.
Through a formative study of usability barriers, we confirmed
the lack of visual accessibility features as a key barrier for BLV
users of VR content and applications. In response, we designed
and developed ENVISIONVR, a novel visual accessibility system
leveraging a VLM, voice input and multimodal feedback for
scene interpretation and virtual object interaction in VR. An
evaluation with 12 BLV users demonstrated that ENVISIONVR
significantly improved their ability to locate virtual objects,
effectively supporting scene understanding and object interaction.

Index Terms—Virtual Reality (VR), Vision Language Models,
Visual Accessibility, Blind and Low Vision Users.

I. INTRODUCTION

V IRTUAL Reality (VR) is a primarily visual medium.
The centrality of visual perception in the VR experience

presents a major challenge when making the technology
accessible to Blind and Low Vision (BLV) users. While
screen readers and voiceover systems have played a crucial
role in enabling BLV users to access information from two-
dimensional (2D) screens, this accessibility issue persists for
three-dimensional (3D) spatial content. In contrast with how
a screen reader works on conventional 2D user interfaces, the
current form of VR applications challenges the systematic
organisation and delivery of 3D spatial information in an
intuitive and efficient format.

In an effort to address the exclusion of BLV users from VR
experiences, prior work has studied visual accessibility design
in virtual [32, 31] and augmented reality [12]. These efforts
have adopted different strategies, such as enhancing visual
information through view magnification, brightness/contrast
adjustment, object contour highlighting [32]; or converting
visual information to other forms like audio descriptions of
virtual objects [32] or vibrotactile feedback [31]. With the
advent of Vision Language Models (VLMs), new opportunities
are emerging to generate vivid and detailed scene descriptions
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based on the user’s field of view. Such capability can be
embedded in output modalities such as speech, audio, and
haptic cues to facilitate the user’s understanding of 3D scenes.

This paper presents ENVISIONVR, an integrated set of
VR scene interpretation and virtual object localization tools
that assist BLV users in navigating VR. The development
was guided by a formative usability study with nine BLV
participants, which provided empirical information on the
support required by BLV users and, particularly, the types
of accessibility features that support scene understanding and
interaction. ENVISIONVR was then implemented as a proof-
of-concept system to improve visual accessibility in VR by
providing (a) high-level natural language scene interpreta-
tion powered by a VLM, and (b) detailed low-level object
localization tools based on speech, audio, and haptic cues.
The system was evaluated in a user study with 12 BLV
participants, who were asked to complete three tasks related to
scene understanding, object localization, and object interaction
with and without ENVISIONVR in a VR scene. Participants
achieved a significantly higher success rate when locating
virtual objects with significantly lower perceived difficulty
with ENVISIONVR.

This research makes three main contributions. First, the
formative study adds to the existing literature on accessibility
barriers for BLV users by emphasizing the lack of functions
for scene description and interaction support as a key concern.
Second, to the best of our knowledge, ENVISIONVR is the
first proof-of-concept system to incorporate detailed VLM-
based scene descriptions for real-time visual accessibility in
VR, through spatial audio, voice instructions, and speech-
based function activation methods. Third, we offer a set of
design implications derived from the system’s development
process and evaluation to inform visual accessibility design in
VR more extensively.

II. RELATED WORK

A. Visual Accessibility Design in VR

In a study conducted by Naikar et al. [22], 39 out of 106
inspected free VR experiences (36.8%) lacked accessibility
features. Furthermore, users may encounter multiple accessi-
bility barriers in the same context [5]. Extensive work has
focused on advancing visual accessibility in VR to provide
a more inclusive experience [9]. Mostly, this has been ap-
proached through augmenting visual information [32, 19, 25]
or translating it into audio or haptic feedback [31, 17, 32, 14].

Outstanding work in the area of augmenting visual infor-
mation includes the development of tools for magnification,
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contrast adjustment, color correction, text and display size
adjustment, among others. Gear VRF Accessibility [25], for
instance, provided a framework for developers to adapt zoom,
invert colors, and add captions in a VR environment. VRi-
Assist [19] supported the user by offering visual assistance
based on eye tracking, providing tools like magnification,
distortion, colour and brightness correction. SeeingVR [32]
involved a larger set of visual augmentation tools that proved
effective for task completion in VR (such as menu navigation,
visual search, and target shooting). Consistent with these
approaches, Ciccone et al. [4] recommended implementing
contrast adjustment controls, color correction controls, and
font and display size adjustments to increase information
visibility when designing for visual accessibility.

Research focused on converting visual information into
other forms has also resulted in a variety of systems supporting
visual accessibility in VR. For instance, both Canetroller [31]
and VIVR [17] simulated the use of a white cane in the
virtual world. This included providing 3D spatial audio feed-
back, physical resistance, and vibrotactile feedback to simu-
late cane–virtual object interaction. The aforementioned See-
ingVR [32] also included text-to-speech and object recognition
from visual information to speech. In a more specialized
context, Dang et al. [6] outlined a multimodal-multisensor
VR system with spatial audio, audio descriptions, audio feed-
back, and vibrotactile feedback to enhance the experience of
BLV participants in immersive musical performances. Finally,
VRBubble [14] enhanced BLV users’ peripheral awareness
to facilitate social VR accessibility through audio alternatives
such as earcons, verbal notifications, and real-world sound.

Among both approaches, augmenting visual information
cannot support users who are blind or with very limited
visual perception. Thus, the work in this paper focuses on
integrating the relatively underexplored methods of converting
visual information into speech, audio cues, and haptics. We
investigate how VLMs could be incorporated to provide vivid
scene descriptions. By combining these multiple modalities,
we aim to provide users with a high-level understanding of
their surroundings, as well as a detailed understanding of
object-level information to support interaction.

B. Screen Readers and Web Accessibility

Screen readers are a well-established accessibility tool for
BLV users; their design concepts can provide valuable insights
for the design of visual accessibility in immersive environ-
ments. NVDA, JAWS, and VoiceOver are three of the most
commonly used screen readers for desktops and laptops [27].
While these different screen readers have distinct character-
istics, they share key design principles which underpin their
effectiveness. First, popular screen readers prioritize keyboard
navigation. Keyboard navigation allows users to navigate dig-
ital content without the need for a mouse, which is critical for
people with vision impairment [16]. Second, screen readers
focus on the semantic structure to facilitate smooth navigation
and ensure information accuracy. On this topic, a series of
works [33, 8, 28] have specifically focused on how to improve
the usability of screen readers by correctly and efficiently

conveying semantic details. Third, screen readers also provide
alternative text for images, which is a crucial step to help
convey non-textual content [29, 21]. Fourth, screen readers
use headings and landmarks to assist website navigation and
hierarchy [24]. Finally, screen readers also assist user input,
such as filling in and submitting forms and documents online,
an important part of web interaction [2].

ENVISIONVR takes inspiration and expands on the design
principles and concepts of screen readers. Based on the above,
we arrive at an interactive design that uses speech commands
as a parallel to keyboard navigation, while constructing high-
level scene information and detailed object-level information
for BLV users as a parallel to the semantic structure processed
by screen readers. Furthermore, VLMs provide a highly effi-
cient way to produce scene descriptions, a parallel to explicit
alternative text.

C. Powering Visual Accessibility with Artificial Intelligence

The emergence of powerful VLMs has enabled the auto-
mated generation of high-quality descriptions of visual in-
formation. Current VLMs [23, 3, 18, 1, 30] are capable of
jointly processing images and text data for image captioning,
visual question answering, and medical image analysis. These
models are now being deployed in a range of use cases to
power visual accessibility features. For example, De La Torre
et al. [7] demonstrated potential applications of their Large
Language Model (LLM)-based tool for 3D scene editing in
visual accessibility. Jiang et al. [15] highlighted the potential
of advanced AI models to enhance the quantity and quality
of audio descriptions. Microsoft developed SeeingAI [20] to
narrate the physical world for BLV users. Similarly, Be My
Eyes launched Be My AI [10], an AI assistant powered by
GPT-4, which provides detailed descriptions of photos taken
and uploaded by BLV users, and a braille display for deaf-
blind users. Specific use cases for scene description in real-
life scenarios have been identified through a diary study [11],
which highlights the effectiveness of generative models for
visual accessibility design.

The increasing attention to applying VLMs to interactions
in 3D content and accessibility design illustrates the strong ca-
pability of such models. While existing work has demonstrated
how state-of-the-art models could be applied in accessibility
design for 2D images or videos, there has been limited work
studying how these models could be applied in accessibility
design for VR immersive environments.

III. FORMATIVE STUDY

In the formative usability study, which involved nine BLV
participants, we sought to understand the accessibility barri-
ers encountered in consumer-based VR and AR technology.
Through this process, we studied the adaptations implemented
when facing such barriers, namely the way people with specific
access needs modified their behaviour or received assistance
from another non-disabled person to fully or partially over-
come these issues.
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A. Method

Our study protocol evaluated the usability of representative
consumer-level, single-user VR experiences to identify the
types of barriers encountered. The majority of the experiences
represented content currently available in the market, while
others were included to cover the full range of usability
demands in VR, such as vision, hearing, touch and physical
movement, and interaction modes, such as controller-based
and hand-tracking. The study tasks and experiences became
progressively more complex as the study progressed. See the
Online Appendix for the complete set of experiences, tasks
and sub-tasks.

The Meta Quest 2 was used. Tasks and experiences
were designed following the typical user journey; beginning
with wearing and fitting the VR hardware (VRH: Head-
set, VRC: Controllers), followed by navigating the Meta
Quest home menu to configure existing accessibility features
(VR1: Menu), and completing each of the selected experiences:
VR2: “As it is” 360° video1 (immersive video documen-
tary), VR3: Job Simulator2 (videogame simulating a cooking
scenario, using virtual hands to manipulate objects while
following cooking instructions), VR4: Moss3 (storyline-based
videogame where the user becomes a secondary character
that interacts with objects and controls other characters), and
VR5: Elixir4 (hand-tracking-based videogame where the user
manipulates virtual objects with their real hands). Sub-tasks
were basic commands revolving around specific steps required
to progress through each experience and explore available
features and interactables.

In total, participants completed 34 sub-tasks spread across
two VR hardware tasks and five VR experiences (e.g., ‘Adjust
the focal distance of the headset’, ‘Spot different visitors in the
scene, from those close by to those at a distance’). Participants
were asked to perform each sub-task while thinking aloud. A
researcher scored task success on a 0–3 scale (0 = unable
to start or finish the task, even with adaptations, 1 = able to
start but unable to finish the task, even with adaptations, 2 =
successful completion of the task with adaptations, and 3 =
successful completion of the task without adaptations). The
concept of adaptation arose after a pilot study that showed
most sub-tasks were not achievable for multiple people with
access needs. Thus, we resolved to study adaptations as either
self-initiated unconventional behaviour (e.g., holding a VR
controller with two hands for pointing accuracy) or assistance
from another person through a Wizard of Oz approach (e.g.,
imitating a non-existent screen reader feature).

The study was approved by the Ethics Committee of the
College of Engineering, Design and Physical Sciences, Brunel
University of London. The study session lasted approximately
120 minutes per participant. The sessions were facilitated
by a researcher experienced in providing BLV accessibility
support; they were in charge of observing, scoring sub-tasks,

1Produced by 360 Labs
2Produced by Owlchemy Labs
3Produced by Polyarc
4Produced by Magnopus

and assisting the participants. A technician was in charge of
onboarding and looking after the technical elements.

1) BLV Participants: Nine participants (3 female, 6 male)
who self-reported as blind or with low vision were recruited
through an inclusive research user panel (managed by Open
Inclusion [13]). All participants provided informed consent.
Their ages ranged from 27 to 68 (M = 43.11 years, SD = 13.82)
and their previous experience with VR technology ranged
from novice (1) to competent (3). For these participants,
sight was classed as the access need that impacted their lives
most extensively. These details are summarized in Table I.
To distinguish from participants in the study reported in
Section V, participants in the formative study are labelled as
PF1 to PF9.

B. Results

1) Task Success: This score indicates the level of success
in completing a sub-task. Each participant was presented with
34 sub-tasks in total (VRH = 4, VRC = 6, VR1 = 6, VR2
= 7, VR3 = 4, VR4 = 5, VR5 = 2). 305 individual scores
were produced across the nine participants over the seven VR
tasks/experiences; one sub-task was not performed due to par-
ticipant request (PF8, VRH). Mean scores are summarized in
Table I. The home menu (VR1) presented the lowest total mean
score while the highest was achieved in Job Simulator (VR3).
Low-vision participants could fully or partially complete VR1
and VR2 sub-tasks, blind participants were unable to start
most of these sub-tasks. This trend partially evened out on
the next experiences (VR3, VR4 and VR5), with all participants
presenting mixed score levels, although blind participants were
still positioned in the lower scale.

2) VR Accessibility Barriers: Whenever a participant
scored 2 or below (Task Success) in a sub-task, a usability
friction instance was logged. A total of 157 instances of
usability friction were encountered. The most common barrier
revolved around the lack of screen reader, with a 25.48%
frequency (n = 40 out of 157 total instances). This barrier
was closely followed by no zoom or magnification options
and issues operating the VR controllers, each with a 17.20%
frequency (n = 27). Participants were generally able to adapt
to these barriers through external support (n = 142, 90.45%),
such as help provided by the facilitator, and on a few occa-
sions through self-initiated actions (n = 9, 5.74%). Common
adaptations included requesting further instructions to interact
within the specific VR environments, with a 24.84% frequency
(n = 39), closely followed by ‘mimicking’ missing assistive
features such as an ad-hoc screen reader (n = 35, 22.29%) or
ad-hoc audio descriptions (n = 31, 19.75%).

3) Adaptations for Blind Participants: Blind participants
had difficulty with experiences that only provided single-
modality outputs. This issue was particularly notable when
information was only communicated by visual means, but
participants also experienced some difficulty interpreting infor-
mation presented in a single modality using audio or haptics.
Often, audio descriptions of the play space, interactable objects
and the VR pointer location were necessary to help them
orient themselves. This was most common at the beginning

https://www.youtube.com/watch?v=BE-irHmbQOY
https://jobsimulatorgame.com/
https://www.polyarcgames.com/games/moss
https://www.magnopus.com/projects/elixir
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TABLE I
PARTICIPANT DEMOGRAPHICS AND TASK SUCCESS SCORES FOR THE FORMATIVE STUDY WITH BLV USERS. VR EXPERTISE INDICATES VR EXPERIENCE

LEVEL (1 REPRESENTING NOVICE AND 5 REPRESENTING EXPERT). MEAN SCORES (M) AND STANDARD DEVIATION (S) ARE PROVIDED FOR EACH VR
TASK OR EXPERIENCE.

of the experience, and when haptic and audio signals were
not enough to convey the type of the object (PF1, PF3, PF8).

Audio tutorials were also helpful when friction occurred.
On most occasions, tutorials guided participants on controller
use, for example to explain how controllers were mapped
to interactions in a specific scene, or how to manipulate
interactables or control characters (PF1, PF3, PF8). In this
regard, PF3 highlighted the need for a directional cueing
system that could, for instance, guide them to move their
controllers closer to the menu.

Audio feedback in combination with haptic feedback was
another requirement identified throughout the study. When
they were provided conjointly (e.g., VR3 used haptics and
audio to simulate the opening of a virtual door), PF1 and PF3
could more easily perceive what was going on in the scene.
When such signals were poor or did not exist, it became more
difficult for participants to orient themselves (PF1, PF3 PF8).

4) Adaptations for Low-Vision Participants: Low-vision
participants such as PF5 completed more sub-tasks than the
blind participants but required longer periods to familiarize
themselves with the virtual environments. Explicit audio de-
scriptions and tutorials were important to clarify what par-
ticipants were partially seeing in a scene. PF9, for instance,
benefited from audio description in VR2. Detailed and repeated
instructions were helpful for PF2 in VR5.

Multimodal feedback was important in some instances. For
PF2, multiple signals (i.e. peripheral vision, haptics and sound)
helped them to touch the interactable objects in VR3. But
they struggled in VR2 because there was no haptic feedback
confirming button interaction. Similarly in VR4, several partic-
ipants encountered difficulty because there was no clear signal
when an object was interactable and the colour contrast was
low (PF2, PF5, PF9).

C. Summary

Results from the formative study revealed that BLV users
face various accessibility barriers in VR. The lack of inte-
grated screen reader functionality and audio descriptions were
identified as major barriers preventing them from completing
sub-tasks without assistance. While low-vision participants
required longer periods to familiarize themselves with the
environments, or concrete audio descriptions to clarify the
scenes, blind participants were unable to carry out specific
sub-tasks in VR4 and VR5 because there was no appropriate
multimodal feedback to, for instance, understand the location
of objects. In contrast, VR3 offered helpful audio cues when
reaching interactable objects.

The provision of accessibility features was irregular across
the experiences, consistent with the findings of Naikar et
al. [22]. BLV participants continually struggled to complete
sub-tasks related to visual capability demands, revealing that
where visual accessibility features existed (e.g., colour contrast
adjustment, audio levels) these were insufficient. It was also
observed that isolated screen reader or audio description
implementations are unlikely to accommodate BLV users’
requirements. In contrast, a more complex system dedicated to
providing high-level descriptions of the virtual environments
coupled with detailed descriptions of interactable objects could
serve as an effective guide both for blind and low-vision users
facing difficulty with navigating VR experiences.

IV. DESIGN OF ENVISIONVR

The formative study suggests that BLV users require a scene
interpretation functionality which builds upon the principles
of a screen reader to incorporate spatial elements to assist
users to navigate and interact within the 3D space. While prior
work, such as SEEINGVR [32], has focused on features that
support visual perception (e.g. zooming, contour highlighting),
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Practice Scene

Where am I? The scene in front of you shows 
a minimalist room with a blue 
cup on a white table flanked by a 
blue chair and a brown chair, 
two potted plants, and a small 
wooden box. The background 
includes a white wall with a door.

Golden Key

Test Scene - Anchor 1

What is near me?

Desk

Radio

Found Brew Button. 
One meter ahead.
<Beeping Sound and vibration>

Test Scene - Anchor 2

Where is the Brew Button?

Fig. 1. Examples of functions supported by ENVISIONVR to enhance the accessibility of VR experiences for BLV users. Left: The user can ask “Where am
I?” and the ENVISIONVR system reads out a detailed description of the user’s current field of view. Middle: The user can ask “What is near me?” and the
system reads out the names of the three main objects near the user with a spatial tone to indicate the object’s location. Right: The user can ask “Where is the
Brew Button?” and the system uses a beeping sound and directional instructions to communicate the distance to the Brew Button. When the user reaches the
Brew Button, the controller vibrates to inform the user.

we pursue an alternative strategy and seek to replicate and
evaluate the familiar experience of using a screen reader and
listening to audio descriptions to provide visual accessibility
for 3D content.

In the development of ENVISIONVR, we sought to adhere
to the following key design objectives. First, we recognize
that the inclusion of visual accessibility features should not
necessitate the onerous manual reconfiguration of existing
VR experiences. This requirement acknowledges the current
meager state of visual accessibility among existing VR ap-
plications as noted in the formative study and by Naikar
et al. [22]. For a visual accessibility solution to be widely
adopted by developers it should therefore not add substantially
to the effort or cost of development and release. Second, the
accessibility features should be minimally disruptive to the
user’s enjoyment of the primary VR experience. This objective
poses certain constraints such as avoiding the remapping of
controller buttons that might be used in the VR experience, or
inadvertently introducing new access barriers, e.g., enforcing
the use of two controllers or difficult-to-press buttons. Third,
we seek to not only support BLV users in perceiving the
virtual environment but also to interact with virtual objects
in the environment. This principle implies the need to provide
information to the user at different levels of granularity, ex-
tending from high-level scene descriptions to detailed object-
level information.

In response to these design objectives, we developed ENVI-
SIONVR, a generalized visual accessibility framework which
can be deployed into a VR application with minimal inte-
gration effect. This framework consists of: (i) the Scene De-
scription Function; (ii) the Main Objects Indication Function;
and (iii) the Object Localization Function. To minimize the
need for remapping controller buttons, these functions can be
activated by three simple speech commands, namely “Where
am I?”, “What is near me?”, and “Where is the <object
name>?”. For the implementation evaluated in this paper, the
user must first press Button A to issue a voice command
but this could in theory be changed to a ‘wake’ word or
remapped to any other button. The use of these three functions
is illustrated in Figure 1 and their implementation is described

in more detail in the remainder of this section.

A. Scene Description – Where am I?

Issuing the “Where am I?” voice command triggers the
Scene Description Function, which describes the user’s field
of view in a few sentences. An overview of the implemen-
tation of the Scene Description Function before and during
runtime is provided in Figure 2. Details of each step in the
implementation are provided in the Online Appendix.

Obtain Anchor Screenshots
Generate screenshots at camera anchor 
positions defined by the developer with 
orientations of 0, 45, …, 315 degrees.

Textual Prompt
Please describe the scene in no more than 
2 sentences or around 30 words. Start the 
description with "The scene in front of you“.

GPT-4o

Pre-baked Scene Descriptions

Real-Time 
Camera Position 

& Orientation

Real-Time 
Scene 

Descriptions Text-to-Speech

Audio 
Output

Match with Anchors

Step 1: Generate Pre-baked Scene Descriptions at Camera Anchor Points

Step 2: Match real-time camera with anchors to read out pre-baked descriptions

Fig. 2. Overview of the Scene Description Function. Scene description is
provided in two steps. In Step 1, camera anchor positions are determined
by the developer or automatically by the system. Screenshots of the field
of view of these anchor points with orientations of 0, 45, ..., 315 degrees
along the horizontal plane together with a textual prompt are fed into GPT-
4o to generate pre-baked scene descriptions. In Step 2 during runtime, we
match the current camera position and orientation with the closest-matching
anchor position and orientation to read out the pre-baked descriptions via the
Microsoft text-to-speech (TTS) service.

Before runtime, camera anchor points5 are determined
manually by the developer. As shown in Figure 3, upon
specifying the camera anchor points, a script is executed to

5We define anchor points as a list of (x, y, z) coordinates which define the
position, but not the orientation, for the user camera to be placed in the scene,
such that the user camera placed at all anchor points, with eight different
orientations each, capture user field of views with all of the important objects
in the scene.
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automatically capture eight screenshots of the user field of
view at each anchor point with orientations of 0, 45, ..., 315
degrees. These screenshots are then sent to a vision language
model (VLM) together with a textual prompt, and a short
scene description is obtained for each camera anchor position
and preset orientation. For example, if four camera anchor
positions are determined, 4 × 8 = 32 scene descriptions are
generated. We used GPT-4o as the VLM and used the textual
prompt “Please describe the scene in no more than 2 sentences
or around 30 words. Start the description with ‘The scene in
front of you”’ to generate the scene descriptions. The scene
descriptions are stored locally in a CSV file. As the scene
descriptions are generated before users execute the application,
we refer to these descriptions as ‘pre-baked’ 6 .

Z

X

Anchor 1

Anchor 2

Anchor 3

Anchor 4
Current 
Camera

0°
45°

90°135°

180°

225°
270°

315°

Reads scene 
description of 

closest-matching
{Camera 4, 90°}

3-i
3-ii

3-iii
3-iv

3-v
3-vi

3-vii
3-viii

3-i 3-ii 3-iii 3-iv

3-v 3-vi 3-vii 3-viii

Fig. 3. Top-down view of camera anchor positions in a VR escape room
and the user field of view in eight directions for each anchor point (left).
At each field of view, a screenshot is taken to generate the pre-baked scene
description. Example field-of-view screenshots taken at Anchor 3 are provided
in the bottom images.

During runtime, the Scene Description Function processes
the current user position and orientation to find the anchor
point with the closest matching position and orientation and
reads out its ‘pre-baked’ scene description using the Microsoft
Azure text-to-speech (TTS) service. As the scene descriptions
have been generated by the VLM before runtime, this mapping
process allows scene descriptions to be read out to the user
with very low latency, usually within tens of milliseconds
(M = 19.8, SD = 19.5) based on data from our user study.

6Currently, scene descriptions are generated prior to users executing the
application (i.e. pre-baked). If the VR scene is modified during runtime the
scene descriptions will not be accurate.

B. Main Objects Indication – What is near me?

Issuing the “What is near me?” voice command triggers
the Main Objects Indication Function, which announces
the names of three key objects which are near the user, each
followed by a short spatial tone to indicate the object’s location
relative to the user headset in the scene. Exactly which objects
are read out is determined by a ‘runtime importance value’.
This value is proportional to a preset importance value, and
inversely related to the distance between the object and the
user camera. Here, the preset importance value for all objects
can be determined automatically by ENVISIONVR based on
the presence of rendering components, or specified manually
by the developer. If an object has been previously announced,
its runtime importance value is reduced to allow other objects
to be announced in subsequent activations of the function.
Details on how the importance values are determined can be
found in the Online Appendix.

C. Object Localization – Where is the ¡object name¿?

Issuing the “Where is the <object name>?” voice com-
mand triggers the Object Localization Function, which starts
a beeping sound with the beeping frequency inversely pro-
portional to the distance between the right controller and the
object. Directional and distance information (e.g., ‘1 meter
ahead’) is also provided at regular time intervals to guide
the user. When the controller is close enough to the object
to interact with it, the controller vibrates. If the object is
interactable and can be held, the system will also announce
“holding <object name>” when it is picked up. More imple-
mentation details are provided in the Online Appendix.

V. EVALUATION STUDY

To evaluate the potential benefits of ENVISIONVR, we
conducted a user study with 12 BLV participants. Participants
completed three types of prescribed tasks in VR both with
ENVISIONVR and without. The without condition represented
the default experience available to BLV users with no dedi-
cated visual accessibility features. The study was approved by
the research ethics committee in the Department of Engineer-
ing at the University of Cambridge.

A. Method

A within-subjects design was adopted to evaluate the per-
formance of ENVISIONVR (abbreviated in Section VI as
EVR) and the no accessibility features condition (abbrevi-
ated in Section VI as NVR). The order of conditions was
counterbalanced. For each condition, participants were first
familiarized with the available functions in a practice scene
(see Figure 1 left image). Participants were encouraged to use
all available functions and the experimenter gave examples
of the types of tasks they would be asked to complete. After
completing familiarization in the practice scene, participants
were transported to the test scene.

The test scene, a VR Escape Room [26], was chosen for
several key reasons. First, it is a tutorial scene made freely
available by Unity and so provides an example of the type
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of existing VR experience that may require retrofitting of
accessibility features. Second, it contains rich objects and
scene elements. Third, it supports different interactions with
virtual objects (such as grabbing objects and pressing buttons).
We define two study anchor points in this scene (see Figure 1
middle and right image) and the combination of condition and
anchor point is balanced across participants. At the given study
anchor point, participants then completed the tasks described
in the following subsection.

B. Tasks

The degree to which ENVISIONVR supports BLV users
in perceiving and interacting with the virtual environment
is evaluated across the three tasks summarized below. A
complete list of questions and tasks for the two anchor points
in the test scene is provided in the Online Appendix.

1) Scene Understanding Task: Participants are asked to
rate a statement to evaluate their understanding of the
scene from 1 (very unlikely to be true) to 5 (very likely
to be true). For example, at Anchor 1 (see Figure 1
middle image), participants are asked to judge whether
the statement “This is a scene of a classroom with a
desk and a chair” is likely to be true or not.

2) Object Localization Task: Participants are asked to turn
to face a specified object in the scene. For example, they
are asked to turn to face the radio at Anchor 1. The task
completion status was recorded as a yes/no binary value.

3) Object Interaction Task: Finally, participants are asked
to interact with an object in the scene. For example,
they are asked to push the “Brew Button” at Anchor 2
(see Figure 1 right image). Again, we record their task
completion status as a binary value.

For each task, participants also rated the difficulty they
encountered in completing the task on a scale from 1 to 5.

C. Participants

We recruited a new participant sample with the assistance
of Open Inclusion [13]. All participants provided informed
consent. The sample consisted of 12 participants, of which
three reported being blind and nine reported having low vision.
All three blind participants reported regular use of screen
readers or other forms of assistive technology. Among the nine
participants who reported having low vision, five participants
reported regular use of assistive technology, yielding a total
of eight participants who regularly use assistive technology.
Table II provides a summary of the collected demographic
information of all 12 participants. To differentiate from the
formative study, participants are labeled as P1 to P12.

D. Apparatus

During the experiment, participants wore a Meta Quest 3
headset and held the right controller. Participants completed
all tasks while remaining seated in a swivel chair. The headset
was connected to a Windows 11 laptop in wired ‘link’ mode.

VI. RESULTS

In this section, we first present the study results for each task
outlined in Section V-B. Later in Subsections VI-D and VI-E
we report on observations of usage behavior with EnVisionVR,
as well as qualitative feedback captured in the post-study
interview.

A. Scene Understanding Task
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Fig. 4. Scene Understanding Task: Performance of all participants (left)
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Fig. 5. Scene Understanding Task: Distribution of the perceived difficulty
(higher score indicates lower perceived difficulty) for the NVR and EVR
conditions for participants who regularly use assistive technology and for
those who do not. Black squares indicate the mean value.

In the Scene Understanding Task, participants responded
to the given statement on a scale from 1–“very unlikely” to
5–“very likely”. Since at one anchor location, the statement
was false, we converted these raw responses such that a
higher score indicates a closer match to the correct answer.
Figure 4 plots the scene understanding score of all partic-
ipants in the NVR (M = 3.67, SD = 1.44) and EVR
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TABLE II
PARTICIPANT DEMOGRAPHICS FOR THE EVALUATIVE STUDY WITH BLV USERS.

Participant Age Gender Education VR Experience Vision From
Birth

Vision Description Assistive Technology Regular
Use

P1 58 Female Masters Inexperienced Blind No Sighted in the past but have no
usable vision today.

Voiceover and Jaws as screen
readers; Other tech with audio

assistance at home.

Yes

P2 21 Female A levels Inexperienced Low
Vision

Yes Born with cataracts and glaucoma,
able to see a decent amount with

glasses.

Uses phone and screen magnifiers to
zoom in.

No

P3 73 Male GCSE Highly
Inexperienced

Blind No Lost sight gradually, totally blind for
the past 2 years.

Uses screen reading software: JAWS,
NVDA, Voiceover.

Yes

P4 50 Female Higher
National
Diploma

Inexperienced Low
Vision

No Stargardt’s which affects central
vision.

Uses Voice Over and Zoom Text. Yes

P5 79 Male GCSE Highly
Inexperienced*

Blind No Lost sight during a degree course. Siri, Alexa, Be My Eyes, JAWS,
Voiceover, and other screen readers.

Yes

P6 36 Male College Neither
inexperienced nor

experienced

Low
Vision

N/A Can see 1 meter ahead, central vision
in one eye only.

Phone has voice over - Apple
iPhone. Windows PC, Samsung

tablet. Talking TV. Uses Seeing AI -
to read bus numbers.

Yes

P7 58 Male Postgraduate
degree

Inexperienced Low
Vision

N/A No sight in left eye, limited central
vision (3/60) in right eye. Has

ADHD.

Screen magnification user on the
computer

No

P8 36 Female AS Level Highly
Inexperienced

Low
Vision

N/A Has light perception and no residual
vision. Difficulties in reading if the

text is not in the right format.

Uses screen reader on a daily basis.
NVDA on laptop. Talkback on

Android. Previously iPhone.

Yes

P9 41 Male Bachelor’s
degree

Highly
Experienced

Low
Vision

N/A Little vision in right eye, can see
light and dark and the shape of

things.

Text enlarger on mobile and
computer, and Dragon Naturally
Speaking for speech input and

feedback

No

P10 45 Male Bachelor’s
degree

Highly
Inexperienced

Low
Vision

N/A Zero sight in left eye, right eye is a
prosthetic, 6/36 vision with changing

field. Only sees shape and colour.

Has used lots of tech. Doesn’t use an
actual screen reader. Has reading

glasses and uses audiobooks a lot.

Yes

P11 54 Female Bachelor’s
degree

Highly
Inexperienced

Low
Vision

N/A Sight in right eye, no sight in left
eye. Born with cataracts. Can read

some print with glasses.

Does not use audio on the computer.
Does not use specific software. Can

enlarge print.

No

P12 57 Female Entry level 2
English

Highly
Inexperienced

Low
Vision

N/A No central vision and a tiny bit of
peripheral vision. Can see light, dark,

and some outlines.

NVDA, Alexa in the house, Android
mobile with Synaptec for screen

reader.

Yes

* P5 was new to the concept of VR. He connected VR with soundscapes and gave himself a VR experience rating of ‘Neither inexperienced nor
experienced’. He also said that he had never used technology of this kind later in the testing session, suggesting that an accurate rating could have been
‘Highly inexperienced’.

(M = 4.08, SD = .793) conditions. In Figure 4 we also
make a distinction between whether participants regularly use
screen readers or other assistive technology. This roughly
groups the full participant group into two subsets based on
the degree to which they can directly perceive visual content.
P3, P4, P5 and P12 who regularly use assistive technology
gained a better understanding of the scene with ENVISIONVR
compared with the condition without any accessibility features.
P1, P2, P6, and P10 were able to understand the scene better
without ENVISIONVR, while P7, P8, P9, and P11 achieved
the same level of scene understanding with and without the
tool. The decrease in scene understanding performance was
due to different reasons such as a lack of attention to long
descriptions and failure to capture keywords to support user
judgment (P1), or the lack of evidence to convince them to
negate the statement which claims the escape room is a class-
room (P2, P6). The first-person view descriptions provided
only fragments of information about objects around the user,
which was insufficient to infer high-level information such as
the type and purpose of the scene (P10).

A Friedman test did not indicate a significant difference
in scene understanding scores (χ2 < .01, p = 1.0) between
the NVR and EVR conditions. Friedman tests also did not
indicate a significant difference in scene understanding scores
between the NVR or EVR conditions for participants who

regularly use assistive technology (χ2 = .143, p = .705) or
for those who do not (χ2 = 1.0, p = .317).

Figure 5 presents boxplots of the perceived difficulty ratings
(higher score indicates lower perceived difficulty) of the scene
understanding question for the NVR (M = 2.00, SD = 1.35)
and EVR condition (M = 3.25, SD = 1.29). The difficulty
ratings are grouped for participants who regularly use assistive
technology (NVR: M = 1.75, SD = 1.16; EVR: M =
3.25, SD = 1.49) and participants who do not (NVR: M =
2.50, SD = 1.73; EVR: M = 3.25, SD = .957). A Friedman
test did not indicate a significant difference in perceived
difficulty (χ2 = 3.60, p = .058) between the NVR and EVR
conditions, or a significant difference in perceived difficulty
between the NVR and EVR conditions for participants who
regularly use assistive technology (χ2 = 3.57, p = .059) or
those who do not (χ2 = .333, p = .564).

B. Object Localization Task

Figure 6 summarizes the completion status of the object
localization task for all participants. Six participants were
able to complete the object localization task to turn to face
a specified object in the NVR condition, while the other
six participants were not. In the EVR condition, five of the
participants who were unable to complete the task in the NVR
condition were able to complete the object localization task.
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Fig. 6. Object Localization Task: Performance of all participants (S: Suc-
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Fig. 7. Object Localization Task: Distribution of the perceived difficulty
(higher score indicates lower perceived difficulty) for the NVR and EVR
conditions for participants who regularly use assistive technology and for
those who do not. Black squares indicate the mean value.

Only one participant (P1) was still unable to complete the
task in the EVR condition, and none of the participants had a
worse performance with ENVISIONVR. Most participants (3
out of 4) who do not regularly use assistive technology were
able to complete the object localization task with or without
ENVISIONVR, and ENVISIONVR was able to help four out of
five participants who do regularly use assistive technology, and
who could not locate the virtual object in the NVR condition
to complete the task. Overall, object localization task comple-
tion results show a 91.7%−50% = 41.7% improvement in task
success rate with EVR compared with NVR. As the object
localization task has binary performance data, a McNemar’s
test was adopted. The test indicated a significant difference
(χ2 = 5.0, p < .05) between the NVR and EVR task
completion status, suggesting that ENVISIONVR significantly

improved participants’ ability to locate virtual objects and
significantly reduced their perceived difficulty. A McNemar’s
test also indicated a significant difference (χ2 = 4.0, p < .05)
between the NVR and EVR task completion status for partici-
pants who regularly use assistive technology, but the difference
was not significant (χ2 = 1.0, p = .317) for those who do not
regularly use assistive technology.

Figure 7 presents box plots of the perceived difficulty of the
task for the NVR (M = 2.42, SD = 1.51) and EVR (M =
3.83, SD = 1.34) conditions. A Friedman’s test indicated a
significant difference (χ2 = 4.45, p < .05) between the NVR
and EVR condition for all participants, but this difference
was not significant at the subgroup level, i.e. participants who
regularly use assistive technology (χ2 = 3.57, p = .059) and
those who do not (χ2 = 1.0, p = .317).

C. Object Interaction Task
Figure 8 shows the completion status of the object in-

teraction task. Six participants were able to interact with
a virtual object (such as picking up a key or pressing a
button) under the NVR condition, while the other six were
not. Among those who were unable to interact with virtual
objects, five participants were able to complete the task with
ENVISIONVR, while one participant (P12) was still unable
to complete the task. It is worth noting that P12 reported a
secondary access need based on her learning disability, and
this may have contributed to the difficulty they experienced
in completing the task. Among the six participants who were
able to complete the interaction task under the NVR condition,
five were still able to complete the task with ENVISIONVR.
However, P9 with little remaining vision was not able to
complete the task with ENVISIONVR as he felt the main
objects indication function provided conflicting information
by reporting an object directly behind him, which could not
be confirmed easily using vision. Most participants of the
subgroup who regularly use assistive technology (6 out of 8)
were not able to complete the interaction task in the NVR
condition, and ENVISIONVR was able to support five out
of these six participants to complete the interaction task.
Overall, object interaction task completion results show a
83.3% − 50% = 33.3% improvement in task success rate
with EVR compared with NVR. A McNemar’s test did
not indicate a significant difference (χ2 = 2.67, p = .102)
between the NVR and EVR object interaction task completion
status. For the subgroup of participants who regularly use
assistive technology, a McNemar’s test indicated a significant
difference (χ2 = 5.0, p < .05) between the NVR and EVR
object interaction task completion status, but did not reveal
a significant difference (χ2 = 1.0, p = .317) for participants
who do not regularly use assistive technology.

Figure 9 presents box plots of the perceived difficulty of the
task for the NVR (M = 2.92, SD = 1.68) and EVR (M =
3.42, SD = 1.44) conditions. Friedman tests did not reveal a
significant difference (χ2 = 2.78, p = .096) between the NVR
and EVR conditions for all participants, or for participants
who do not regularly use assistive technology (χ2 < .01, p =
1.0), but revealed a significant difference for participants who
regularly use assistive technology (χ2 = 5.0, p < .05).
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Fig. 8. Object Interaction Task: Performance of all participants (S: Successful,
N: Not successful) (left) and the difference between task outcomes in the EVR
and NVR condition for each participant (right). Participants with blindness
and severe visual impairment who regularly use assistive technology are
colored in black, while others are colored in grey. Vertical jittering is applied
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Fig. 9. Object Interaction Task: Distribution of the perceived difficulty (higher
score indicates lower perceived difficulty) for the NVR and EVR conditions
for participants who regularly use assistive technology and for those who do
not. Black squares indicate the mean value.

D. Interaction Behaviors

Figure 10 plots the distribution of the number of ENVI-
SIONVR function activations for participants in the user study.
The results show that the main objects indication function was
activated a similar number of times for participants who regu-
larly use assistive technology (M = 2.00, SD = 1.20) and for
participants who do not (M = 2.25, SD = 2.22). However,
participants who regularly use assistive technology activated
the scene description function more (M = 3.25, SD = 3.01)
than participants who do not regularly use assistive tech-
nology (M = 1.25, SD = .500). While a Mann-Whitney
U test did not reveal a statistically significant difference
(U = 6.50, p = .106) in the number of scene description
function activations, the rank-biserial correlation effect size
was moderate (rrb = .594), suggesting that there may be a
practical difference between both groups. The object local-

ization function was also activated more by participants who
regularly use assistive technology (M = 2.50, SD = 1.77)
compared with those who do not (M = 1.25, SD = 1.26),
but the Mann-Whitney U test did not reveal a statistically
significant difference (U = 8.50, p = .216, rrb = .469). This
suggests that participants with less visual perception capability
tend to rely more on high-level scene descriptions and the fine
detail object localization function. Meanwhile, participants
with different vision capabilities relied on the Main Objects
Indication Function at a similar level.

For participants who do not regularly use assistive technol-
ogy, ENVISIONVR appeared to complement their available
vision. These participants used the scene description function
less as they have enough residual vision to support their
understanding of the scene, as evidenced by the performance
of P2, P7, P9, and P11 in the scene understanding question in
the NVR condition. They were also able to precisely locate
small virtual objects as evidenced by successful completion
of the object interaction task under the NVR condition. These
participants used the main objects indication function more,
likely because their residual vision does not allow them to
explore a wide range in the scene, and they rely on the
function to know what key objects are nearby. Nevertheless,
as Figure 11 indicates, the interaction behavior observations
in Figure 10 only describe general trends, and the usage of
different functions for each participant can be vastly different.
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Fig. 10. Distribution of the number of ENVISIONVR function activations for
participants who regularly use assistive technology and for those who do not
with labeled outliers. Black squares indicate the mean value.

E. Post-Study Interview

In the post-study interview, 11 out of 12 participants
expressed a preference for ENVISIONVR over the NVR
condition. Key themes are summarized below.

1) Level of Information Delivered.: The design of visual
accessibility systems often faces a trade-off between the level
of detail of information provided and the ease of use of the
system. For the ENVISIONVR system, participants liked how
the scene description function was “helpful to identify a new
location” (P2, P4, P5, P7, P10) with the “correct amount
of detail” (P7) and “gave you a picture of the scene” (P3)
and “a general overview” (P9, P10) to “build an image up
in your mind” (P6). P11 commented that the tools could be
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Fig. 11. Total number of ENVISIONVR function activations for each
participant for the scene understanding question, object localization task, and
object interaction task. P2, P7, P9, and P11 do not regularly use assistive
technology, while others do.

more helpful if there was more detailed information. Overall,
participants liked how the level of information delivered had
an appropriate amount of detail to gain a sense of physical
presence in the scene.

“I felt that I was in a real bar or a restaurant and
I’d gotten out my camera [to get a description using
Be My Eyes], it was very very good.” (P3)

Participants also liked how the main objects indication
function told the user about key objects nearby. They liked
how it told the user “if there is something on the right and
left” (P2) and “helped users to be more confident by saying the
names of things” (P5), but found the spatial tone to indicate
the object location to be redundant (P4), and it sometimes did
not pick up objects near the user (P9).

Participants found the object localization function helpful
in providing the precise location of individual objects. Partic-
ipants found it helpful in “telling [participants] how far [they]
need to move” (P2), locating the object and letting the user
“know the object is there” (P5), and “helping [participants]
understand the direction of the object” and “gives good feed-
back” (P8). P4 found the beeping helpful in telling whether the
controller was getting closer to the object. Overall, participants
found ENVISIONVR helpful in delivering both high-level
scene information and detailed object-level information.

“[With EnVisionVR,] this is the first time that I
have been able to do anything in VR. This is really
promising, I think you’re on to something here.” (P1)

2) System Latency.: Participants commented that existing
vision accessibility systems they use in the physical world,
such as Be My AI, take several seconds to return a description
of the provided image. Participants contrasted this with their
experience of ENVISIONVR, which they found to be very
responsive. P8 commented how she appreciated systems which
give constant feedback on updates of what is in front of the
user as the user moves.

“The advantage here is that the answer comes
instantly and doesn’t take any time to process the
question.” (P3)

3) Consistency in System Design.: The user study revealed
that inconsistency in the system design could pose usability
barriers. For example, the command “Where am I?” for the
scene description function describes the user’s field of view,
while the command “What is near me?” for the main objects
indication function reads out the names of objects which are
near the user but not necessarily in front of the user. The
inconsistency in reference frames led to confusion among
some participants (P1, P9).

“Visually I could see where things were and I could
move towards easily. The voice assistant wasn’t
giving me the instruction I needed, it didn’t quite
work. When I was looking for that ‘brew button’, it
said it was next to me but I couldn’t see it.” (P9)

As the scene descriptions were pre-baked based on images
of the scene, there can be different names for the same
object in the scene description function and the main objects
indication function. For example, the bookholder on the desk
in Anchor 1 of the test scene was referred to as a computer
in scene descriptions, which can cause confusion for users.

4) User Agency.: Participants also commented on different
aspects of user agency over the system. These included user
control on what information to deliver, the speed of delivery,
and the level of detail of delivered information.

“I’d like this experience to have a speedier read-
out speed, close to 200%. That really should be
customisable. It’d be nice to have two levels of
description, detailed and then summary.” (P1)
“I’d like a mode where I could scan a room, turning
in my chair, and keep hearing an updated description
of what’s in front of me.” (P1)
“For me maybe [the voice description] was a bit
slow. If you are in a new environment you don’t want
it too fast.” (P6)

A number of participants also suggested that the system
could support more voice commands to improve user agency.
P7 commented that the system was helpful but required users
to memorize the different speech commands for each function.
P12 commented that she had difficulty in trying to remember
how to phrase the question.

“The only thing I would say is maybe broaden the
wording used to launch the command... If it was a
bit more open in terms of voice commands.” (P6)

VII. DESIGN IMPLICATIONS

Results from our evaluation study reveal important design
implications for VLM-assisted interactive systems for visual
accessibility design in VR. Through these guidelines, we
intend to assist designers and developers in creating more
inclusive immersive systems for BLV users.

1) Different levels of vision require different levels of
information. Figure 10 not only suggests that partici-
pants with less vision capability generally require more
information than those with better vision. Most impor-
tantly, it highlights the uneven distribution of high-level
scene information and detailed object-level information



12

required by both participant subgroups, and how this
uneven distribution is different for both groups. Partici-
pants with less vision capability rely primarily on visual
accessibility systems to perceive visual information as
compared to their residual vision, so they are inclined to
ask for different levels of visual information. Participants
with better vision capability primarily used their residual
vision and the vision accessibility tool to complement
and verify what they saw. For example, P9 was confused
when the system said that a ‘Brew Button’ was close to
him, but he could not see it in his view.

2) Information should be promptly conveyed to support
interaction. As BLV users rely on visual accessibility
systems to support their understanding of 3D scenes,
such systems need to deliver rich information with
low latency. As P3 commented, ENVISIONVR provided
descriptions similar to those generated by human vol-
unteers in Be My Eyes. P3 liked how ENVISIONVR
was able to generate descriptions instantly, unlike Be
My Eyes which required users to wait for the human
response or Be My AI which also required around 5
seconds to receive AI responses from the server.

3) Spatial information should be expressed consistently.
VLM-based accessibility systems should ensure that
the delivered spatial information is consistent with the
user’s perception model. The system could deliver scene
descriptions with respect to the user’s field of view,
with the option to keep providing an updated description
of what is in front of the user (P1, P8), or deliver
descriptions of the entire scene from a third person view,
instead of only what is in front of the user (P9), but the
reference frame has to be made explicit and intuitive
for the user. Additionally, the delivered information
should also be consistent among different functions. The
same applies to the consistency in the names of objects
mentioned in different functions.

4) New systems should be consistent with established
assistive technology workflows. For example, partici-
pants who regularly use screen readers such as P1 and P6
preferred the speed of the voice assistant to be faster and
adjustable. However, participants who do not regularly
use assistive technology did not express preferences in
system verbosity or reading speed. The same applies for
customizable level of detail of descriptions to cater to
different user preferences (P1, P6, P11). P1, P6, and
P7 also suggested improving the number of supported
speech commands, as it would otherwise pose a heavy
mental load and cause unnecessary distractions. These
observations suggest that the flexibility in speech com-
mands and accuracy in recognizing user intent as seen in
many speech-based accessibility systems is also crucial
for VR visual accessibility systems to adapt to different
users to reduce their effort and improve user agency.

5) Redundancy should be provided in system input
and output. Our user study demonstrated how ENVI-
SIONVR was helpful in assisting BLV users through
a combination of audio cues, speech descriptions, and
haptic vibrations. P2 and P8 appreciated how the haptic

vibration together with audio/speech confirmation reas-
sured them by indicating that the controller had reached
the object of interest. Conversely, the lack of certain
feedback modalities can take away user confidence, as in
the case of P4 when she felt a vibration in the controller
but received no speech feedback. This highlights the
need to include system input and output redundancy and
ensure that information from different input and output
channels are consistent, which aligns with the design
principles (DP1 and DP2) identified by Dudley et al. [9].

VIII. DISCUSSION

ENVISIONVR represents an original integration of high-
level natural language scene descriptions and detailed object-
level speech, audio, and haptic cues for object localization and
interaction. We complement previous work on visual accessi-
bility design in VR by incorporating VLMs to provide detailed
scene descriptions to extend works such as SeeingVR [32]
and VRBubble [14] which convert visual information to
speech and audio, while also following Canetroller [31] and
VIVR [17] in incorporating different feedback modalities to
convey visual information such as the presence of a virtual
object. We also demonstrate how it is possible to leverage
speech, audio, and haptic information together to design a
multimodal system for VR visual accessibility design. Results
from the user study show good promise in terms of supporting
BLV users to enjoy VR experiences with the greatest benefit
seemingly afforded to blind users or users with less usable
vision.

The study results also reveal how ENVISIONVR could be
further improved. As ENVISIONVR is intended to provide
a proof-of-concept of how VLMs can be applied with other
interaction modalities for visual accessibility design for VR
content, the scene descriptions are pre-baked. This limits the
current approach to static VR scenes. Future design iterations
will aim to provide scene descriptions for dynamic VR scenes.

The evaluative study found different participants had differ-
ent preferences in the verbosity and level of detail of scene
descriptions. These examples demonstrate the significance of
incorporating the ability to customize features for individual
preferences, as well as adaptations for each user as they
become more accustomed to the system. Additionally, we
acknowledge that ENVISIONVR is primarily a speech-driven
interface with a limited number of supported commands.
Future design iterations of ENVISIONVR will allow users
to access more object and scene-level information through
alternative and complementary forms of interaction.

IX. CONCLUSION

This paper presents ENVISIONVR, a proof-of-concept vi-
sual accessibility tool for VR based on scene descriptions and
object-level guidance powered by VLMs, speech and audio
cues, and haptic feedback. Our evaluation study with 12 BLV
participants demonstrates the effectiveness of ENVISIONVR
in assisting scene understanding, object localization (41.7%
increase in task success rate), and object interaction (33.3%
increase in task success rate) for BLV users compared with
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the condition without visual accessibility features. We also
summarize a list of design implications covering five different
aspects of visual accessibility. We hope these findings and
contributions will advance research in this space and ultimately
lead to more inclusive VR experiences.

SUPPLEMENTAL MATERIAL

The online appendix is available at https://osf.io/zb2ak/.

ACKNOWLEDGMENTS

Junlong Chen is supported by the China Scholarship Coun-
cil and Cambridge Trust. This work is also supported by
the Engineering and Physical Sciences Research Council
(EPSRC), through the following grants: Inclusive Immer-
sion: Inclusive Design of Immersive Content (EP/S027637/1
and EP/S027432/1) and Towards an Equitable Social VR
(EP/W025698/1 and EP/W02456X/1). The authors thank Open
Inclusion for their help in recruiting the research participants
and administering the user research.

REFERENCES

[1] Pietro Bongini, Federico Becattini, and Alberto
Del Bimbo. Is GPT-3 All You Need for Visual Question
Answering in Cultural Heritage? In Computer Vision–
ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part I, pages 268–281. Springer,
2023.

[2] Yevgen Borodin, Jeffrey P Bigham, Glenn Dausch, and
IV Ramakrishnan. More than meets the eye: A survey
of screen-reader browsing strategies. In Proceedings of
the 2010 International Cross Disciplinary Conference on
Web Accessibility (W4A), pages 1–10, 2010.

[3] Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Uni-
fying Vision-and-Language Tasks via Text Generation.
In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 1931–1942. PMLR, 18–24 Jul 2021.

[4] Brendan A Ciccone, Shannon KT Bailey, and Joanna E
Lewis. The next generation of virtual reality: recommen-
dations for accessible and ergonomic design. Ergonomics
in Design, 31(2):24–27, 2023.

[5] Chris Creed, Maadh Al-Kalbani, Arthur Theil, Sayan
Sarcar, and Ian Williams. Inclusive AR/VR: accessibility
barriers for immersive technologies. Universal Access in
the Information Society, 23(1):59–73, 2024.

[6] Khang Dang, Hamdi Korreshi, Yasir Iqbal, and Sooyeon
Lee. Opportunities for Accessible Virtual Reality Design
for Immersive Musical Performances for Blind and Low-
Vision People. In Proceedings of the 2023 ACM Sympo-
sium on Spatial User Interaction, pages 1–21, 2023.

[7] Fernanda De La Torre, Cathy Mengying Fang, Han
Huang, Andrzej Banburski-Fahey, Judith Amores Fer-
nandez, and Jaron Lanier. LLMR: Real-time prompting
of interactive worlds using large language models. In
Proceedings of the CHI Conference on Human Factors
in Computing Systems, pages 1–22, 2024.

[8] Nicoletta Di Blas, Paolo Paolini, Marco Speroni, et al.
“Usable Accessibility” to the Web for Blind Users. In
Proceedings of 8th ERCIM Workshop: User Interfaces
for All, Vienna, 2004.

[9] John Dudley, Lulu Yin, Vanja Garaj, and Per Ola Kris-
tensson. Inclusive Immersion: a review of efforts to
improve accessibility in virtual reality, augmented reality
and the metaverse. Virtual Reality, 27(4):2989–3020,
2023.

[10] Be My Eyes, Sep 2023. Available at: https://www.
bemyeyes.com/blog/announcing-be-my-ai. Accessed on
December 4th 2024.

[11] Ricardo E Gonzalez Penuela, Jazmin Collins, Cynthia
Bennett, and Shiri Azenkot. Investigating Use Cases of
AI-Powered Scene Description Applications for Blind
and Low Vision People. In Proceedings of the CHI
Conference on Human Factors in Computing Systems,
pages 1–21, 2024.

[12] Jaylin Herskovitz, Jason Wu, Samuel White, Amy Pavel,
Gabriel Reyes, Anhong Guo, and Jeffrey P Bigham.
Making Mobile Augmented Reality Applications Acces-
sible. In Proceedings of the 22nd International ACM
SIGACCESS Conference on Computers and Accessibility,
pages 1–14, 2020.

[13] Open Inclusion. Home - Open Inclusion. Available at:
https://openinclusion.com/. Accessed on Jan. 19th, 2025.

[14] Tiger F Ji, Brianna Cochran, and Yuhang Zhao. VR-
Bubble: Enhancing peripheral awareness of avatars for
people with visual impairments in social virtual reality. In
Proceedings of the 24th International ACM SIGACCESS
Conference on Computers and Accessibility, pages 1–17,
2022.

[15] Lucy Jiang, Mahika Phutane, and Shiri Azenkot. Beyond
Audio Description: Exploring 360° Video Accessibility
with Blind and Low Vision Users Through Collaborative
Creation. In Proceedings of the 25th international ACM
SIGACCESS conference on computers and accessibility,
pages 1–17, 2023.

[16] Claire Kearney-Volpe and Amy Hurst. Accessible Web
Development: Opportunities to Improve the Education
and Practice of Web Development with a Screen Reader.
ACM Trans. Access. Comput., 14(2), jul 2021. ISSN
1936-7228. doi: 10.1145/3458024.

[17] Jinmo Kim. VIVR: Presence of immersive interaction
for visual impairment virtual reality. IEEE Access, 8:
196151–196159, 2020.

[18] Ziyang Luo, Yadong Xi, Rongsheng Zhang, and Jing
Ma. VC-GPT: Visual Conditioned GPT for End-to-
End Generative Vision-and-Language Pre-training. arXiv
preprint arXiv:2201.12723, 2022.

[19] Sina Masnadi, Brian Williamson, Andrés N Vargas
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