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Figure 1: Left to right: Part of the living room to be memorized; Part of the living room with misplaced objects; A participant
recalled the location of a guitar by putting it back (short introductory video: https://vimeo.com/454138851).

ABSTRACT
Understanding the effects of environmental features such as visual
realism on spatial memory can inform a human-centered design of
virtual environments. This paper investigates the effects of visual
realism on object location memory in virtual reality, taking account
of individual differences, gaze, and locomotion. Participants freely
explored two environments which varied in visual realism, and then
recalled the locations of objects by returning the misplaced objects
back to original locations. Overall, we did not find a significant re-
lationship between visual realism and object location memory. We
found, however, that individual differences such as spatial ability
and gender accounted for more variance than visual realism. Gaze
and locomotion analysis suggest that participants exhibited longer
gaze duration and more clustered movement patterns in the low
realism condition. Preliminary inspection further found that loco-
motion hotspots coincided with objects that showed a significant
gaze time difference between high and low visual realism levels.
These results suggest that high visual realism still provides positive
spatial learning affordances but the effects are more intricate.

CCS CONCEPTS
• Human-centered computing → Virtual reality; Empirical
studies in HCI; Human computer interaction (HCI).
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1 INTRODUCTION
One of the ultimate goals of virtual reality (VR) is to be able to simu-
late the real world as convincingly as possible. Fidelity captures this
aspect and is defined as the extent to which a virtual environment
(VE) and interactions are indistinguishable from a real environment
[47]. Considering a VE that depicts an imaginary world, the con-
cept of fidelity can be extended to the plausibility of any virtual
scene, which may or may not reflect the real world. Fidelity consists
of display fidelity, interaction fidelity, and simulation fidelity [27].
Visual realism is an important component of display fidelity. There
are a number of factors contributing to visual realism: lighting,
geometry, shadow softness [21, 35], rendering techniques [24, 25],
and texture quality. They can be roughly categorized as geometric
realism and illumination realism [39].

With the advances in computer graphics, which result in ever-
increasing visual realism, it is both theoretically and practically
desirable to provide empirical evidence of the potential effects of
visual realism. High visual realism and low visual realism provide
different learning affordances. High visual realism facilitates percep-
tion of details, concretization of abstract concepts, and experiential
learning in scenarios connecting to real life. Low realism promotes
abstract thinking, high-level comprehension and generalization of

https://vimeo.com/454138851
https://doi.org/10.1145/3385956.3418945
https://doi.org/10.1145/3385956.3418945
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concepts [17]. Further, the need for high visual realism and low
visual realism often varies by fields. Education and training often
benefit from high visual realism for knowledge transfer. Virtual
surgery, for example, often uses highly-detailed representations of
the body; natural environments [16][11] and historic architecture
[15] visualizations may also benefit from high realism. Certain vi-
sual arts, games and scientific visualizations, on the other hand,
may benefit from low visual realism taking the forms of stylized
arts, symbolization and abstraction. To make things more complex,
naive realism points out a potential mismatch between preference
and performance [40]. In terms of spatial cognition, there is less
clear evidence regarding the effects of visual realism [23], while
such insights are crucial to guide the design of VE to present space
to the audience and facilitate spatial learning. Theoretically, we find
that spatial cognition and visual realism are linked: elements that
are important for achieving visual realism such as texture, light,
and shadows coincide with cues that are important for depth and
spatial location: Texture can provide information about distances
[38] and depth [30]; shadow can provide information of spatial
depth and object location. In terms of the relationship between
spatial memory and visual realism, Kettunen et al. [20] suggest that
human spatial knowledge may be influenced by vantage point, the
number of visible vertical features, and visual realism. Complexity
is also thought of as a major determinant of attention. When people
are not occupied with a task, spontaneous looking emerges which
selects stimuli that are evolutionarily likely to be significant [19].
These stimuli are physical properties (such as presence of many
contours), and collative properties, such as novelty and complexity
[3, 4].

Object location memory is an important component of spatial
cognition [44]. Research from neuroscience proposed three pro-
cessing stages in object location memory: (a) object processing,
(b) spatial-location processing, and (c) object to location binding
[34]. What happens in the object processing stage is interesting
to look at: for example, flowers of all kinds are called flowers, but
are also recognized as having different visual features. Some re-
searchers therefore proposed two dissociable subsystems in the
brain: abstract-category recognition, which maps different inputs
to the same output representation and categorizes objects in the
absence of visual details. Second, the specific-exemplar recognition
which maps different inputs, even fairly similar ones, to different
outputs and preserves visual details of objects to distinguish specific
exemplars. In the object processing stage, the abstract-category and
the specific-exemplar object recognition neural subsystems work
in parallel to recognize an object [26, 28]. Therefore, it is possi-
ble that by increasing visual realism, the specific-exemplar object
recognition enhances, which could result in better object location
memory.

There have only been a few studies of visual realism in the field
of spatial cognition [49]. The literature also showed unclear rela-
tionships between visual realism and spatial task performance. In a
3D non-VR supermarket environment, participants in the photo-
realistic group showed higher accuracy and lower time used in a
route reproduction and a scene recognition tasks compared to the
nonrealistic group, but no effects were found in a map identification
and a route drawing tasks [29]. In another study, participants in the
high visual realism environment performed better in a wayfinding

task, sketch-mapping task and picture-sorting task [49]. Lokka and
Çöltekin [23], on the other hand, found the participants had the
highest route recall accuracy in a middle-realism VE compared to
an abstract VE and a realistic VE. The VEs were represented as
videos. Another study suggests that individual differences such
as gender, prior computer use, and cognitive ability accounted for
more variance in performance on tasks requiring spatial knowledge
acquisition from a desktop VE than visual realism of the VE [48].

Studies regarding visual realism and object location memory
specifically have been even more sparse: Mania et al. [25] found
no significance in object location memory in high and low visual
realism conditions which varied in rendering techniques and colors
(colored vs. grey). In their VR task, participants recalled the shape of
3D objects in each numbered position and reported their confidence
level. Murcia-López and Steed [33] did not find overall significance
either in an object location memory task where participants re-
called the location of three objects. They also created heatmaps
of navigational patterns under high and low realism levels but no
quantitative analysis was conducted. Some earlier studies will not
be discussed here due to the technological limitations resulting in
lower visual realism overall, as noted by several authors (e.g. [9]).

Based on the above theories and empirical studies, we hypothe-
size that higher visual realism increases object location memory,
and such an effect is mediated by individual characteristics such
as spatial abilities. We conducted a study with two visual realism
levels. The level of visual realism was controlled in two aspects:
illumination realism and geometric realism. Geometric realism was
further manipulated with polygon count and texture resolution [18].
Our study has the following characteristics: 1. We designed a more
robust task where participants had to reconstruct an environment
without any information, compared to some previous studies that
matched objects with given locations. The environments were also
relatively complex which possessed abundant visual information
in the forms of objects and details (Fig. 2) 2. With VR, we were able
to obtain and quantitatively analyze other objective metrics, such
as gaze and locomotion which shed light on participants’ atten-
tion and exploration patterns in VR that are important for spatial
cognition and performance.

The rest of the article is organized as follows: We first describe
the environment design, experiment procedure and data collected in
Section 2; we then present the statistical analysis results in Section
3. In Section 4, we summarize the statistical implications; we discuss
future research directions in spatial cognition, trajectory analysis,
gaze analysis, and visual realism quantification in Section 5. Finally,
we summarize the findings in Section 6.

2 METHOD
In order to analyze the effects of visual realism on spatial memory,
we used a two-level mixed group design with counterbalancing.
Participants were randomly placed into four groups, where each
participant went through two different visual realism levels in two
environments, a living room and a kitchen, respectively, in order
to remove carry-over effects: (1) group 1: high visual realism living
room followed by low visual realism kitchen. (2) group 2: high
visual realism kitchen followed by low visual realism living room.
(3) group 3: low visual realism living room followed by high visual
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realism kitchen. (4) group 4: low visual realism kitchen followed by
high visual realism living room.

2.1 Participants
Twenty student participants (9 female, 10 male, and 1 transgen-
der female, mean age: 21.3, age range: 18-29) were recruited. The
participant inclusion criteria were (self-reported): 1. normal or near-
normal vision. If not, participants should wear contact lenses. 2.
healthy 3. not cognitively impaired 4. 18-30 years old.

2.2 Apparatus
We selected two daily environments to mimic the real-life object
location memory scenarios. The environments were a living room
and a kitchen, each with two different visual realism levels (Fig.
2). There were a total of 48 moveable objects and other immov-
able objects scattered in each room. Among them, 19 objects were
intentionally misplaced in the living room, and 21 objects were
intentionally misplaced in the kitchen for the participants to re-
construct. The study was conducted using the HTC Vive Pro. The
environments were developed in the Unreal Engine 4.21.2 to achieve
high graphics quality in the high visual realism level. The high vi-
sual realism was photorealistic and took advantage of the DirectX
11 pipeline that included deferred shading, global illumination, lit
translucency, and various post-processing effects [10]. From a high
realism environment to a low realism environment, polygon count
was reduced by 95%; texture size was reduced to 1/256 of the origi-
nal size; rendering quality was reduced with the engine scalability
settings in the Unreal Engine 4. The reduction in polygon count
only affected surface details, leaving the general shape of the objects
intact, so that participants could complete the task with no difficulty
in recognizing objects. We noticed the scene became darker with
lighting and shadow calculation that resulted in darker places under
high realism, whereas there was homogeneous lighting in the low
realism level. But such difference did not cause difficulty to recog-
nize objects. We aimed to control visual realism quantitatively and
keep the changes the same for different parts of the environment.
The VE was generated with the assets 1 from the Unreal Engine
4 marketplace. The teleporting and object grabbing interactions
were implemented so that users could freely teleport in the space
and used natural grabbing to intuitively interact with the objects.
A moving area restriction was also implemented to prevent users
from making physical movement, so that their locomotion can be
precisely recorded using software tools.

The objects to be memorized were everyday small-sized objects
such as cups, toys, laptops, or books. Efforts were made to ensure
multiple possible locations to place the objects to lower the possi-
bility that participants would use semantics to speculate on correct
locations. In addition, objects were non-intrusive (i.e., in logical

1Dream Apartments: https://www.unrealengine.com/marketplace/en-
US/product/dream-apartments, HQ Residential House
https://www.unrealengine.com/marketplace/en-US/product/hq-residential-
house, Houseplant Pack: https://www.unrealengine.com/marketplace/en-
US/product/houseplant-pack, Timers, Clocks and Counters Pack:
https://www.unrealengine.com/marketplace/en-US/product/timers-
clocks-and-counters-pack. VR Integrator radial and dockable menus:
https://www.unrealengine.com/marketplace/en-US/product/vr-integrator-radial-
and-dockable-menus

positions). There were three types of misplacement: (1) topologi-
cal changes: objects were put into different surroundings, that is,
the reference objects have changed; (2) displacement: objects were
still on the same object, but the relative location has changed; (3)
orientation changes: objects orientations were changed.

2.3 Procedure
The walk-through video of the experiment can be found online
(https://vimeo.com/435231081). At the start of the experiment, par-
ticipants were informed that their task was to complete a set of
spatial memory tasks. They were not informed about the visual re-
alism differences. Upon entering the experiment, participants were
automatically placed in a virtual bedroom which was the training
room. The self-paced training included learning the VR interactions
through reading the instruction on the wall, and performing a task.
The task was a mini-version of the actual experiment that was
shorter in time and simpler in difficulty to prepare the participants.
In this phase, the experimenter monitored the participants’ actions
on the screen, and offered help or correction, although the experi-
menter would not offer information during the main experiment.
Participants were able to enter the real experiments after they got
familiar with the VR interaction. The result from the pilot study
showed that all participants were able to master VR interactions
after this training phase.

After the training phase, the main experiment started and partici-
pants entered the learning phase. In the learning phase, participants
explored the room and memorized objects locations and rotations
for the duration of four minutes. There was a timer on a table that
counted down. The duration of this phase was determined through
a pilot study. They were not informed on how many or which ob-
jects will be misplaced in the room. They could teleport freely in
the room but not interact with the objects. After the four minutes,
participants were automatically taken to an empty virtual space
where the short-term memory formed into long-term memory dur-
ing the duration of 30 seconds [1]. Next, participants entered the
reconstruction phase. They were asked to reconstruct the room, i.e.,
to place objects into their original locations and rotations. Partici-
pants could not only freely teleport in the space, but also interact
with the objects by picking them up and placing them down. Par-
ticipants had the maximum of ten minutes in this task. They may
exit early if they think they have completed the reconstruction.
The duration was determined according to a pilot study where
most participants finished in ten minutes or less. After completing
the first environment, participants completed questionnaires on a
desktop computer. The questionnaires were 1. Demographics ques-
tionnaire; 2. Presence questionnaire; 3. VR system evaluation; 4.
Short answers questionnaire that asked what strategies they used
to memorize the objects. Participants then completed the second
half of the experiment where they repeated the learning phase
and the reconstruction phase for the second environment. After
participants went through both VR environments, they completed
post-questionnaires on a desktop computer. The questionnaires
were 1. short answers questionnaire that asked about whether they
have noticed any differences between the two environments. 2.
spatial working memory test 3. Object location memory test.

https://vimeo.com/435231081
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Figure 2: left to right, top to bottom: high realism living room, high realism kitchen, low realism living room, low realism
kitchen.

2.4 Metric
2.4.1 Response variables. In order to analyze the performance
quantitatively, we collected the 𝑥,𝑦, 𝑧 coordinates and the roll, pitch,
yaw of each interactable object after the reconstruction phase.

2.4.2 Player variables. (1) Gaze data. We used a plug-in 2 in the
Unreal Engine to deduct gaze position from ray tracing from the
center of the eye. We also tracked the start and end time of the gaze
to calculate gaze duration. (2) Player locomotion data. Player loco-
motion was tracked through the in-game player character location
along with the time stamps.

2.4.3 Moderator variables. (1) Reported presence. Presence data
was collected through the spatial presence experience scale (SPES)
[14]. (2) VR system evaluation. We changed the qualitative VR
heuristic evaluation [42] to a five point Likert scale questionnaire
(Table 3 in the Appendix). (3) demographics (age, gender, major, VR
experience, game experience) [6, 22]; (4) object location memory:
We measured the individual difference with object location memory
test using the online version [13] developed based on the original
version [37]. The test is in 2D on a computer screen, in which
participants study an array of objects for a designated period of
time, and the array of objects will then disappear. Next, the array of
objects will reappear, but some of the objects will have exchanged
positions. Participants then select the objects that have moved.
Participants have five trials to complete the task. (5) Spatial working
memory. We also collected spatial working memory through the

2Virtual Reality Pawn and Components Plugin:
https://www.unrealengine.com/marketplace/en-US/product/vr-pawn-components-
plugin

Corsi block-tapping test that we developed on Unity based on the
original version [8].

3 RESULTS
3.1 Spatial memory
3.1.1 Placement error. We used two different measures to evaluate
participants’ performance and the first is the placement error. We
calculated the Euclidean distance between the original position
and the new location placed by participants for all 48 objects and
calculated the average as the error metric for each participant. We
derived the placement error for each participant pooling the living
room and kitchen data, since there was no significant difference
between the two rooms. A paired t-test was then conducted to
compare the error between levels of visual realism. There was no
significant difference (𝑡 (19) = −.728, 𝑝 = .476) in error for high
visual realism (𝑛 = 10, 𝑀 = 37.574, 𝑆𝐷 = 19.665), and low visual
realism (𝑛 = 10, 𝑀 = 41.015, 𝑆𝐷 = 19.677). Units are centimeters.

3.1.2 Categorized error. We considered the possibility that multi-
ple types of errors may incur during the reconstruction in deriving
the placement error. In order to remove confounding errors, we
restored the room as participants left and categorized the error
semantically into five categories using the method adapted from
the object location memory error categories by Silverman and Eel
[37]. We added topological error which was not included in the
original categories, since the nature of their task does not incur
this type of error. These five categories are (1) correct: participants
correctly identified that the object had been moved, and moved
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it to a close location; (2) topological error: correctly identified ob-
ject had been moved, but moved it to a wrong location; (3) correct
rejection: correctly identified that the object had not been moved
and left the object at the original place; (4) false alarm: Incorrectly
determined that the object had been moved; (5) miss: incorrectly
identified that the object did not move. We considered both the
original room and also the misplaced room in order to categorize
errors. Fig. 3 shows the complexity of possible errors. We conducted
a Chi-square analysis which showed no difference between high
and low fidelity (𝜒2 (4, 20) = 1.668, 𝑝 = .797 for the living room,
𝜒2 (4, 20) = 1.820, 𝑝 = .769 for the kitchen).

Figure 3: Left to right, top to bottom: original locations;
messy room; the construction result of one player.

Based on the new error category, we also summed up (1) - (3) and
subtracting (4) - (5) to derive the composite measure according to
Silverman and Eel [37]. The composite measure and the placement
error were also strongly correlated (𝑟 = −.586) which indicated
that the two error metrics both reflected participants’ performance.
The placement error appeared to be a better metric because it
was continuous from the plots; it also captured the performance
difference better, as we observed different participants having the
same categorized error but different placement errors. The result
from 3.1.1 and 3.1.2 indicate that there was neither a difference in
the overall error, nor in any of the error subcategories.

3.1.3 Relationship between task performance and different explana-
tory variables. There was a negative relationship (𝑟 = .694 for high
visual realism, and 𝑟 = .623) between placement error and 2D object
location memory (tested with the same apparatus from Silverman

and Eel [37]), indicating that people with higher 2D object location
memory also performed better in 3D (Fig. 4). Participants’ perfor-
mance did not appear to differ in high and low visual realism (Fig.
4). The 2D object location memory score was calculated using the
discrimination index proposed by Banks [2].

Figure 4: Placement error and 2D object location memory,
showing kitchen and living room performance separately
for each participant.

In order to investigate the overall relationship between multi-
ple variables, we conducted multiple linear regression with the
dependent variable of placement error, and independent variables
of age, gender, major, game experience, object-location memory,
spatial working memory, and visual realism level, for living room
and kitchen separately. Then we used backward selection to remove
variables with the highest p-value, one at a time, to find a model
with both high 𝑟2 and low overall p-value. The final regression
model after variable selection is summarized in Table 1 and Table
2 (see the appendix). The results again indicated that people with
higher 2D memory test scores performed better as above. It is also
shown in the table that women outperformed men in the kitchen.

3.2 Gaze
Current gaze analysis and visualization methods do not adequately
support eye tracking in VEs [41]. We did preliminary analysis with
the gaze data focusing on gaze duration. We aggregated the gaze
duration for all interactable objects for each participant to calculate
the total gaze duration of objects. An unpaired t-test revealed a
marginally significant higher gaze duration (𝑡 (18) = −1.980, 𝑝 =

.063, Fig. 5) in the living room for the low visual realism (𝑛 =

10, 𝑀 = 48.938, 𝑆𝐷 = 13.429) compared to the high visual realism
(𝑛 = 10, 𝑀 = 39.180, 𝑆𝐷 = 7.915). Note that this was the gaze
during the learning phase instead of the reconstruction phase, since
we are more interested in how participants explored the place
during memorization. Specifically, in the living room, participants
gazed on the following objects significantly longer in the low visual
realism version: cups, family photo, golden bowl, phone, white
pillow, white vase, and wine. However, we did not find such a
relationship (𝑡 (18) = −.616, 𝑝 = .546) in the kitchen for high visual
realism (𝑛 = 10, 𝑀 = 30.232, 𝑆𝐷 = 8.247) and low visual realism
(𝑛 = 10, 𝑀 = 33.768, 𝑆𝐷 = 16.167) (Fig. 5).
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Figure 5: Gaze duration and visual realism levels in the liv-
ing room (left) and in the kitchen (right).

3.3 Locomotion
Locomotion hotspots can be analyzed using cluster analysis of
point locations which resulted from teleportation. We performed
Chi-Square Significance Test and variance-to-mean Ratio (VMR)
calculations over the locomotion data (Fig. 8 and 9 in the appendix).
The VMR score is a numerical indicator of the spatial distribution
of a given point pattern. In the living room, we found the point
pattern to be slightly clustered in the high visual realism condition
based on a (𝜒2= 199.67, 𝑑 𝑓 = 155, 𝑝 = .018; VMR score = 1.374)
and moderately clustered in the low visual realism condition (𝜒2
= 260.6, 𝑑 𝑓 = 155, 𝑝 = 4.585𝑒 − 07; VMR score = 1.795). In the
kitchen, we also saw a more clustered locomotion pattern in the low
visual realism condition: the points weremoderately clustered in the
high visual realism condition (𝜒2= 248.07, 𝑑 𝑓 = 173, 𝑝 = 3.171𝑒 − 4;
VMR score = 1.736) and were significantly clustered in the low
visual realism condition (𝜒2 = 287.67, 𝑑 𝑓 = 173, 𝑝 = 1.984𝑒 − 07;
VMR score = 2.003). The result is consistent with the gaze data.
The clusters emerged in the place where there were significant
differences in gaze between high and low visual realism, that is,
where cups, family photo, golden bowl, phone, white pillow, white
vase, and wine were.

Figure 6: Participants’ movement in the living room by ag-
gregating the data from all participants. Left: high realism;
right: low realism.

4 DISCUSSION
We designed a VR reconstruction task to evaluate spatial memory in
high and low visual realism environments. Participants memorized
object locations and moved misplaced objects back to their original
location. Visual realism, according to our results, is not a significant
factor influencing object location memory. However, individual dif-
ferences such as 2D object location memory and gender accounted
for more variance in performance than the fidelity differences. This

Figure 7: Participants’ movement in the kitchen by aggregat-
ing the data from all participants. Left: high realism; right:
low realism.

finding is interesting as there are several differences between the
original object location memory test [37] and our reconstruction
task: 1) the former was in 2D and the latter was in VR 2) in the
object location memory test, participants only need to point out
the objects that are misplaced; in our reconstruction task, they also
need to remember where they were and place them at the correct
location. 3) By letting participants put the object anywhere they
remember, participants may make topological errors as mentioned
in 3.1.2. Despite these differences, the results indicate that people
perform better in the object reconstruction task if they have higher
scores in 2D object location memory independent of environmental
features such as the visual realism level. This finding aligns with
other studies that found individual differences played a more crit-
ical role than visual fidelity in navigation tasks [48], and visual
realism did not affect identifying object locations [25].

We also found that women outperformed men in the kitchen
environment, which aligns with the general finding that women
outperform men in object location memory task, as noted in a meta-
analysis studies [46], despite that men outperformwomen in almost
all other spatial tasks [6].

The result that there was no significant difference across condi-
tions does not necessarily exclude the possibility that visual realism
impacts object location memory. Given that participants in the high
visual realism group used less effort in both gazing and locomotion,
but did not perform worse than the low visual realism group, we
speculate that high visual realism still helps people to memorize
objects. The correspondence between the gaze data and the loco-
motion data could indicate that people tend to stay at a location
and gaze-memorize. This could be related to their memorizing strat-
egy. When asking about memorizing strategies, 43% of participants
mentioned about counting. The hotspot of locomotion could be
their "counting place".

The small number of participants could obscure the performance
results. Further, given the objects used in the study were relatively
simple in geometry and texture, participants might mainly utilize
a viewpoint-abstract, category-tuned object-recognition system
to memorize objects instead of attending to details. Although the
objects were more complex than previous experiments that used
primitive geometries such as cylinders and spheres, they still might
not be complex enough for visual realism to show an effect. Verbal
memory triggered by familiarity is another impacting factor in
visual recognition and visual memory. Object location memory is
confounded by verbal memory, particularly when everyday objects
are used [5]. The literature has also discussed that semantic knowl-
edge affects the visual processing of objects [7]. When asked about
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memorization strategies, 57% of participants mentioned heavy us-
age of tying semantics to object location memory, such as: "(I) tried
making personal anecdotes to remember where things went," "(I)
imagine why things are put in certain locations." As much as we
tried to decrease the reliance on semantics by creating multiple
logical locations to place objects, the results show how difficult
it is to decrease semantics’ use when participants entered famil-
iar environments (kitchen and living room), and memorized daily
objects.

Also, sensitivity to realism is quite different from person to per-
son. Some participants commented that visual realism was drasti-
cally different from high to low. However, about 40% of participants
finished the entire experiment without noticing any difference. Sen-
sitivity to visual realismmay be reflected in cognitive style, which is
the tendency to perceive details from the surrounding environment.
Cognitive style influences spatial memory potentially. For example,
a study showed that participants who were better at perceiving the
environment as a whole outperformed participants who focused
their attention on single environmental features in an object loca-
tion memory task [43]. Another possibility is that the difference in
high and low visual realism may be too subtle. Further, the complex
lighting created shadows and made the high realism environments
generally darker (Fig. 2) that may cause lower performance.

5 FUTUREWORK
VR studies have the advantage of tracking and generating substan-
tial behavior data. As a future directive, using machine learning
methods could generate new insights analyzing user behavior and
performance in VR. The locomotion and gaze results presented here
are preliminary. Locomotion trajectory, in addition to point pattern,
could also be analyzed. Trajectory analysis is an active research
topic in spatial-temporal data analysis, although not frequently
applied to VEs. However, there have been methods proposed to
analyze locomotion trajectories in VEs [32]. Other than traditional
statistical methods such as K-means, dynamic time warping (DTW),
machine learning methods such as neural networks have also been
used [36, 51]. Identifying linkages between spatial ability and lo-
comotion pattern is a critical research question for the future that
might provide additional insights [36]. Time, too, as an additional
dimension, can support in-depth analyses. Future analysis could
also consider 3D visualization and hotspot analysis of the gaze data
[41].

Given the possible interference of verbal memory discussed in
Section 4, future studies in spatial cognition may consider using
complex, novel, or abstract objects to decrease semantic influences.

In terms of VR applications design, visual realism is one of the
most essential and exciting environmental features. In previous
empirical studies, different methods were used to control visual
realism. In some studies, visual realism was manipulated in art
style, such as from cartoonish to a realistic style [45]. Other studies
addressed the presence or absence of scene objects (e.g., presence
of items on grocery shelves, [29]). Whether artistic style is part of
visual realism is an open question. For example, a cartoonish style
can be of high visual realism, as seen in recent animated movies
which used state-of-art facial motion capture; Removing scene ob-
jects may remove specific visual cues that lead to a decrease in

information input. Some other studies changed one aspect of vi-
sual realism, such as comparing specific rendering models (e.g., ray
casting v.s. real-time recursive ray tracing [39]; global v.s. local
illumination [52]; flat-shaded v.s. radiosity rendering [25], or geo-
metric realism [18]. Others changed the extent of visual realism.
For example, textures might be removed entirely in the low visual
realism condition [9].

Quantifying and measuring visual realism has been an active
topic in computer graphics following two approaches: automated
computational prediction/computation-based, and subjective hu-
man judgment/perception-based. Automated computational predic-
tion quantitatively calculates the score induced by global illumina-
tion and artifacts given an ideal reference image [31]. Subjective
human judgment typically involves conducting lab experiments to
measure realism perception vs. rendered images/scenes [12, 35, 50].
In future studies, we argue that it is essential to standardize visual
realism definitions and measures. Standardization is necessary to
control precisely and draw broadly-applicable conclusions, whether
it is to study the effects of visual realism on spatial cognition, or
on other dependent variables that are commonly associated with
visual realism such as presence, empathy, or emotions. Multidisci-
plinary knowledge is needed to fully understand the relationship
between vision, locomotion patterns, individual differences, object
location memory, and VR environmental features. We hope that
the findings of this study will open up research avenues for further
explorations.

6 CONCLUSION
Summarizing the study findings, we did not see a significant rela-
tionship between visual realism and object location memory. On
the other hand, spatial ability showed significance in both environ-
ments as a predictor of performance; and, gender showed signif-
icance in the kitchen when females performed better. The corre-
spondence between the gaze data and the locomotion data showed
that participants’ locomotion synchronized with their observation
changes. We also detected that participants under low visual real-
ism gazed at objects significantly longer than participants in the
high visual realism conditions in the living room. Considering that
their performance was the same across conditions, participants
may still benefit from high visual realism, which might provide
learning affordance that helped them memorize quickly. In terms
of locomotion, lower visual realism led to a higher clustering effect,
suggesting a tendency to restrain locomotion and active exploration
under low realism.
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Figure 9: VMR analysis showing clusters of locomotion in
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Table 1: Multiple linear regression model for the living room after backward selection

Living room

Terms Estimate Error t value P value Signif. Codes

(Intercept) 110.063 12.383 8.888 8.46e-08 ***
T4ADI -23.940 5.563 -4.303 4.81e-04 ***
T3ADI -37.089 7.743 -4.790 1.7e-04 ***

Residual standard error: 13.56 on 17 degree of freedom
Multiple R-squared: .662, Adjusted R-squared: .622
F-statistic: 16.63 on 2 and 17 DF, p-value: 9.968e-05
T1ADI – T5ADI were spatial ability measures; high realism level
was coded as 1 in is_high_realism; Similar with is_male and is_STEM

Table 2: Multiple linear regression model for the kitchen after backward selection

Kitchen

Terms Estimate Error t value P value Signif. Codes

(Intercept) 52.796 13.78 3.831 .002 **
Is_male 17.911 5.623 3.185 .006 **
Is_STEM 8.194 5.391 1.520 .149
T2ADI -30.331 13.737 -2.208 .043 *

Residual standard error: 11.49 on 15 degrees of freedom
Multiple R-squared: .654, Adjusted R-squared: .562
F-statistic: 7.097 on 4 and 15 DF, p-value: .002
T1ADI – T5ADI were spatial ability measures; male is coded as 1 in is_male;
Similar with is_STEM
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Table 3: VR system evaluation adapted from VR heuristic evaluation[42]

Heuristics Questionnaire item
Natural engagement

• The overall graphics look good (for example, aesthetics, color schemes, lightings, 3D models
details, textures, no serious lag or flickering).

• I think the interactions with the menus were intuitive.
• I think the interactions with the environment and objects were intuitive.

Compatibility with the user’s task and do-
main • The virtual environment is close to my expectation of real world environment. There was no

unexpected objects/events that contradict my knowledge and/or physics laws (for example,
floating objects, etc.).

• I feel the interactions were compatible with the tasks needed to be performed.

Natural expression of action
• My body representation allowed me to act and explore in a natural manner.
• I had no issue with the hardware (e.g., headset, earphones, straps, controllers).

Close coordination of action and represen-
tation • The system responded to my actions smoothly and without delay.

Realistic feedback
• The effects of my actions were immediately visible and conform to the laws of physics and
my perceptual expectations.

Faithful viewpoints
• The visual representation of the virtual world mapped to my normal perception.
• The viewpoint change by head movement was rendered without delays that could impact
my overall experience.

Navigation and orientation support
• I was able to know where I was in the virtual environment and was able to navigate from
place to place.

Support for learning
• I feel the system provided support for learning of the virtual environment.

Clear turn-taking
• N/A
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