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Figure 1: A sample VR scene with Ninja Hands. It maps one physical hand to many distributed virtual hands, allowing the 
user to comfortably reach distant objects. 

ABSTRACT 
Selection and manipulation in virtual reality often happen using 
an avatar’s hands. However, objects outside the immediate reach 
require efort to select. We develop a target selection technique 
called Ninja Hands. It maps the movement of a single real hand to 
many virtual hands, decreasing the distance to targets. We evaluate 
Ninja Hands in two studies. The frst study shows that compared 
to a single hand, 4 and 8 hands are signifcantly faster for selecting 
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targets. The second study complements this fnding by using a 
larger target layout with many distractors. We fnd no decrease in 
selection time across 8, 27, and 64 hands, but an increase in the time 
spent deciding which hand to use. Thereby, net movement time 
still decreases signifcantly. In both studies, the physical motion 
exerted also decreases signifcantly with more hands. We discuss 
how these fndings can inform future implementations of the Ninja 
Hands technique. 
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1 INTRODUCTION 
In virtual reality (VR), users typically use the hands of their avatar 
to select and manipulate virtual objects. This provides an intuitive 
way to interact with the virtual environment. Consequently, much 
research in VR has been about how to represent avatar hands [27, 
31, 34, 39], how to control avatar hands [37, 48], and how to provide 
haptic feedback when avatar hands touch virtual objects [3]. 

However, selecting objects outside of arm’s reach is slow. Actions 
are added to the selection task when users have to walk to the target, 
teleport their avatar near the target [9], or bring the target close to 
the hand reach by room-scaling [35]. Some interaction techniques 
use ray-casting [37, 50] or change the movement gain of the hand 
[36] to enable reaching into far space. While useful, this makes 
controlling distant movement inaccurate or efortful. 

An alternative to mimicking the user’s real hands in VR is to 
map them to many virtual hands. For desktop computers, ninja 
cursors [28] allowed the user to control many cursors simultane-
ously. This type of control signifcantly lowered target selection 
times compared to controlling only a single cursor. We hypothesize 
that a similar approach could work in VR. It could allow reaching 
far while minimizing physical motion. Further, it could support 
hand-based selection and interaction across large virtual worlds. 
However, it is unclear if avatar hands can retain their intuitiveness 
and efectiveness if multiplied and distributed. 

To address these questions, we present the Ninja Hands tech-
nique for improved target selection in VR. Ninja Hands maps the 
movement of many virtual hands to that of a single physical hand 
(Figure 1). We report on two empirical studies that explore the per-
formance of the technique and the users’ experience. The frst study 
suggests that using 4 and 8 Ninja Hands in a 2.5m×2.5m×2.5m sec-
tion of space lowers target selection times, reduces physical efort 
by minimizing movement, and gives comparable subjective satis-
faction to using a single hand. The second study shows that given 
the same task in a larger 10m×5m×10m environment, 8, 27, and 
64 hands perform comparably in target selection time. However, 
how this time is spent changes with the hand count; at higher hand 
counts, the time spent deciding which hand to use increases, which 
leads to a corresponding decrease in time spent moving. Partici-
pants still move signifcantly less with higher hand counts. We also 
fnd that higher hand counts result in a lower overall workload, but 
this beneft appears to reverse at higher hand counts, suggesting 
the limitations of increasing the number of hands. Together, these 
results illustrate the benefts and drawbacks of a new way of inter-
acting in VR and suggest that avatars that difer from our physical 
bodies are useful, controllable, and enjoyable. 

2 RELATED WORK 
Ninja Hands uses many hands for target selection in VR. Here, we 
discuss the use of avatar hands in VR, how the hands can reach 

distant targets, and how many hands could aid performance in 
target selection. 

2.1 Virtual Hands 
Virtual hands have been extensively used in VR research since the 
1980s [22, 37]. Recent consumer-level VR devices, such as the Valve 
Index and Oculus Quest, also ofer integrated support for hand 
tracking, as well as virtual controller models that show a hand 
holding the controller and touching the same buttons as the user. 

The use of avatar hands ofers many benefts in inducing positive 
user experiences and improving task performance. Many of these 
benefts depend on the visual appearance and tracking accuracy 
of the hands. For example, the visual appearance and realism of 
avatars have been shown to afect presence, the subjective expe-
rience of "being there" [44]; body ownership, the subjective expe-
rience of ownership over the virtual avatar’s body [43]; and the 
overall embodiment of virtual hands [5]. Similarly, presence and 
body ownership results specifcally for virtual hands indicate that 
more realistic hands outperform abstract or non-human hand repre-
sentations such as fat-textured hands, spheres, tracking points, or 
none at all [2, 27, 39, 40]. Further, it has been shown that this sense 
of ownership can be retained even if the virtual hand is displaced 
from the physical one [13]. Users of more realistic hand represen-
tations also outperform less realistic or unrepresented hands in 
performance-based tasks such as typing [27] or pointing [41]. How-
ever, the drawback of realistic representations of hands is that they 
are similarly limited by the arm’s reach of the user. 

2.2 Reaching Out in VR 
One technique to increase reach beyond physical motions is to 
use movement gains. Examples include manipulating the control-
display ratio, for example between a mouse and a cursor or a VR 
controller and the virtual hand. In VR, for example, a classic tech-
nique to do this with avatar hands is the Go-go technique [36]; when 
the user reaches beyond a certain threshold, instead of following 
their physical hand, the virtual hand extends exponentially further. 

Another technique is to increase the selection area into distant 
parts of the virtual environment. The most common approach for 
this is ray-casting, both for mid-air interaction, large screens, and 
VR. In VR, ray-casting is typically based on the pointing direction 
of a hand-held controller (e.g., [8, 37, 50]), though the head has 
also been as the origin [1, 47]. It has further been combined with 
hands by spawning them at the target selected by the ray-cast [8]. 
However, ray-casting faces issues in selecting occluded objects and 
precision at a distance [20, 37]. 

A similar approach is to extend the virtual arm into the distance 
[12, 26]. Here the arm does not extend to infnity as a ray does, 
but it is unclear how to control the length of the arm efectively. 
Thereby, it is also unclear how efectively targets that are very far 
from or close to the user can be reached. 

Some techniques also bring the distant parts of the environment 
within the user’s reach. A classic example of this is the World-in-
Miniature [45], wherein a miniature version of the larger virtual 
space can be used to reach the virtual objects at a distance or 
occluded objects. Similarly, [11] present a technique that brings 
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distant parts of the room within the real reach, but by down-scaling 
the depth of the virtual room. 

Finally, one class of techniques increases the selection area (e.g., 
[15, 48]). This has been demonstrated, for instance, with a 3D bub-
ble cursor [48], volumetric cursor [51], and with cones [15]. The 
challenge with these techniques is increasing precision in selecting 
single targets when their area covers multiple targets, as well as at 
great distances. Recent work that compares multiple several of these 
techniques [30] shows that by augmenting them with a targeting 
mechanism inspired by the bubble cursor [48], these issues can be 
alleviated. However, doing so involves abstract pointing metaphors 
that is far removed from natural hand motion and behavior. 

2.3 Mapping from One to Many 
Instead of increasing the selection area or distance of a single hand, 
previous work on VR has also suggested using multiple limbs. For 
example, Hoyet et al. [24] gave their participants an additional 
sixth fnger, and Guterstam et al. [17] a third arm. However, these 
previous works focus on the experience of having them, such as 
body acceptance and ownership. It is unclear whether they could 
help improving performance in interactive tasks. 

Ninja cursors [28] suggests they could. It maps input from a single 
mouse to n virtual cursors distributed across a desktop display to 
improve target acquisition efciency for large 2D displays. A single 
mouse synchronously moves multiple cursors on the monitor. Only 
one cursor can actively hover over a target at a time; if a cursor 
hovers over a target while another is active, it is stopped in place 
and added to a queue of waiting cursors until the active cursor 
stops hovering over the target, in which case the next cursor in the 
queue is made active based on a frst-in-frst-out principle. Later 
work has expanded the technique by introducing an additional 
input modality, gaze tracking. This is seen in rake cursor [6], where 
gaze tracking is used to choose which cursor in a grid that is active.
The work of Räihä and Špakov [38] similarly uses gaze tracking 
for disambiguation. In VR, Lubos et al. [31] use head tracking to 
disambiguate between two sets of virtual hands. However, they did 
not investigate whether manipulating the number of hands can 
improve shortest-distance gains, but instead focused on control-
sharing between the hands. A key fnding in this body of work is 
that having many efectors (i.e., cursors or hands) improves ef-
ciency, with an additional workload associated with many efectors 
[6, 28, 38]. 

Thereby, we summarise that the use of virtual hands is benefcial 
for user experience in VR. The positive user experience seems to 
transfer for changed bodies, such as to extended arms [12] or to 
multiple limbs [17]. Based on the fndings about the ninja cursors 
technique, mapping from one hand to many hands could improve 
target selection performance by alleviating some of the drawbacks 
that other reaching techniques pose. However, this may decrease the 
user experience. To investigate if and when mapping the real hand 
to many virtual hands could improve target selection performance, 
we design a target selection technique: Ninja Hands. 

3 THE TECHNIQUE 
The Ninja Hands target selection technique enables many hands 
in VR. Three interrelated parameters determine how one hand 

can control multiple hands at once. One, the number and arrange-
ment of the hands; two, the mapping that defnes how they move 
relative to the physical hand; and three, the disambiguation that 
determines which hand should be active if multiple hands touch 
targets simultaneously. This section outlines the design space of 
these parameters. 

3.1 Number and arrangement 
The number of virtual hands in Ninja Hands is two or more, and 
afects their arrangement. Given an even distribution of targets 
and n hands in a virtual environment, this will reduce the shortest 
distance from a target to a hand by a factor of 

√ 
n (similarly to the 

theoretical beneft of ninja cursors [28]). 
The number of hands is tied to their arrangement and determines 

its functionality. For example, a line of two hands spaced across 
a room allows simultaneous selection of objects close to and far 
from the user. Increasing the number of hands in the line allows 
for easy access to objects that are spaced across a surface (e.g., a 
counter) that extends away from the user. Similarly, an arrangement 
of eight (23) hands can form the corners of a cube well suited for, 
for example, interacting with objects spaced apart in the corners 
of a room. Maintaining this cubic arrangement but increasing the 
number to, for example, 27 (33) hands create a distribution that could 
be well suited for a room with many clusters of objects that are 
spaced apart. The arrangement can also vary in scale; for example, 
a smaller cube of 27 hands can form a volumetric selection volume 
(similar to the Silk Cursor [52]). Arrangements might also take on 
more complex shapes for more specialized tasks; for example, we 
envision arm-shaped arrangements of hands that extend into the 
room, allowing the user to interact with anything that touches 
their extended arm, or smaller clusters of hands that align with 
irregularly distributed clusters of objects. 

The main trade-of for the number and arrangement of hands 
is occlusion and decision-making eforts versus shortest-distance 
gains. Increasing the number of hands can cause a cluttering efect 
where hands occlude objects and other hands, or objects occlude 
hands. Similarly, previous work [6, 38] has suggested that having 
to choose from many cursors will lead to an increase in cognitive 
load at higher numbers, and we speculate this also holds for many 
hands. However, by increasing the number of hands, we also re-
duce the shortest distance to any given target, making targets more 
comfortable to reach. Another trade-of is specialization versus 
generalizability. It is possible to specialize the arrangement and 
number of hands for a given environment, so that for example, each 
interactable object in a scene has an adjacent hand. However, this 
means that the given number and arrangement cannot be general-
ized to any environment, which, for example, an arrangement of 
evenly distributed hands might. 

In our studies, we investigate how hand count afects the efec-
tiveness and usability of generic arrangements, similar to work that 
has been done in 2D desktop environments (e.g., [6, 28, 38]). Further, 
we wish to investigate the trade-ofs associated with increasing the 
number of hands. The frst study features four hands arranged in a 
grid and eight hands in a cube, whereas the second study extends 
the cubic arrangement to the scale of a large room and features 8, 
27, and 64 hands. 
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3.2 Mapping 
Mapping describes the movement-display ratio for the virtual hands. 
It defnes how the virtual hands move when the user moves their 
physical hand. 

The mapping can be constant or based on an algorithm. A con-
stant mapping means that the virtual hands move a set distance 
based on the physical hand’s movements, as in the Silk Cursor [51], 
where the movements of the physical hand maps directly to the 
volumetric cursor; potentially, a scaling factor can be applied to 
increase reach. An algorithm-based mapping means that some fac-
tor in the mapping changes the relationship between the physical 
and virtual hands, such as in the Go-go technique [36], where the 
virtual hand moves exponentially faster when extended beyond a 
predetermined threshold. 

The main trade-of for the mapping is coverage against precision. 
This is largely informed by the number and arrangement of the 
hands. For example, if a low number of hands are arranged in the 
center of the room, a constant mapping will not allow them to 
reach the corners of the room, unless a scaling factor is applied. 
An exponential mapping will, but at the cost of a loss of precision 
when reaching the edges of the room. However, one of the main 
advantages of the Ninja Hands technique is that by manipulating 
the arrangement and number of hands, we can decrease the need 
for extreme mapping functions that cause this loss of precision. For 
example, evenly distributing a larger number of hands in the room 
means that anywhere can be comfortably reached with a small 
scaling factor or minimal linear function to increase the reach of 
the hands. Similarly, the user’s reach could also be computed and 
the room flled with exactly enough hands to allow anywhere to be 
reached with a constant mapping and no scaling factor. 

We do not wish to disproportionately advantage the more-handed 
conditions by applying a variable mapping based on the hand count. 
Therefore, we choose a constant gain with a scaling factor in our 
studies. This scaling factor is determined so that the single hand 
can reach all targets and is then applied to all hands. The particular 
scaling factor for each study is reported in its design subsection. 

3.3 Disambiguation 
In the Ninja Hands technique, several hands may touch targets at 
once; disambiguation concerns how to decide which virtual hand 
should be active. We make a fundamental assumption that there 
should only be one active hand at a time; this allows the user to 
better focus on interacting with a single object. 

There are two established approaches to disambiguation. One is a 
queue-based algorithm, as in ninja cursors [28]. In ninja cursors, only 
one cursor can actively touch a target. If other cursors touch targets 
while one is active, they are frozen in place and added to a queue, 
and when the active cursor stops touching its target, cursors in the 
queue are made active based on a frst-in-frst-out principle. In the 
edge case of multiple cursors reaching a target simultaneously, the 
cursor closest to the center of the target is made active. The second 
option is gaze tracking, where the convergence of the user’s gaze 

the queue-based approach is the generalizability; it can function in 
any virtual environment and with any VR hardware confguration. 
Meanwhile, though gaze tracking can more quickly cycle through 
many hands, it will struggle in busy scenes where gaze might be 
occluded, and gaze-tracking hardware currently has limited avail-
ability. 

We seek to understand how Ninja Hands functions in its most 
generalizable form. Therefore, we implement the queue-based ap-
proach for disambiguation in our studies. Since all targets and hands 
in our studies are equally big, in the edge case that two hands reach 
a target simultaneously, a random one is chosen to be active. 

4 FIRST STUDY 
This study aims to evaluate the target selection performance and 
experience of using the Ninja Hands technique. The study uses a 
target acquisition task featuring two implementations of the tech-
nique, as well as a single hand with identical gain as a control 
condition. These hand arrangements are tested with a high and 
low density of distractors to establish if performance is equivalent 
given diferent densities of targets within the same, relatively small, 
space. 

4.1 Design 
The study was within-subjects and had two independent variables: 
Hand arrangement (one hand, four hands in a grid, eight hands in a 
cube) and distractor density (low, high). 

The hand arrangements were a single hand compared against 
two numbers and arrangements of Ninja Hands. One hand repre-
sented a typical long-distance VR selection technique. Four hands 
arranged in a grid represented a two-dimensional arrangement 
with no depth variation. Eight hands arranged in a cube extended 
this concept into three dimensions, introducing depth variation. 
These confgurations featured the same constant mapping with a 
scaling factor of two (roughly equivalent to the diference between 
the bounds of a comfortable 50cm reach and the bounds of the 
target space). 

The hands moved and rotated based on the user’s physical hand 
motion. To alleviate potential biases associated with the appearance 
of the hands, they were implemented wearing dark gloves (see Fig-
ure 7). Basic fnger tracking was implemented using the capacitive 
sensors in the SteamVR Knuckles DV controllers, to increase the 
experience that they were virtual replicas of the user’s hand. 

The study used a target acquisition task, wherein the user must 
use diferent hand confgurations to select eight targets in a 2.5m 
×2.5m×2.5m target space with varying densities of distractors (see 
Figure 2). The targets were eight red spheres (15cm diameter) dis-
tributed in a 2.0m×2.0m×2.0m cube within this space. Spherical 
targets have been used in similar previous research and present 
an easy way to control target size in all dimensions at variable 
distances close to the user [31, 46]. The space was populated with 
visually identical distractors. The distractor density is defned as 

1
3 

1
4 

the minimum distance between each target. The distractor density 
th and determines which hand should be active (as in [6, 38]). was rd of the target space for high and low density, re-

The importance of disambiguation is determined by the ratio spectively; we further subtracted the target diameter. This made 
between the number of hands, their arrangement, and the number high-density 47.5cm and low-density 68.3cm. To place the targets, 
and arrangement of objects in the scene. The main advantage of we used Poisson disk sampling [10] with these values to guarantee 

https://2.0m�2.0m�2.0m
https://2.5m�2.5m


Ninja Hands: Using Many Hands to Improve Target Selection in VR CHI ’21, May 8–13, 2021, Yokohama, Japan 

High Distracter Density Low Distracter Density

User Location

Figure 2: The 10m×5m×10m virtual environment seen from 
the top corner of the room. The targets are distributed 
within a 2.5m×2.5m×2.5m subsection of the environment. 
The user stands on the red mark on the foor. For scale ref-
erence, the red mark has a 50cm diameter. 

the minimum distance between them. The user stood 2m from the 
target space, on a red spot marked on the foor. These confgura-
tions can be seen in Figure 2. This approach to target generation 
ensures a variety of depths and angular sizes for hands and targets. 

The participant performed 8×12 repetitions 96 per hand arrange-
ment and distractor density for 576 observations per participant (96 
trials × 3 hand arrangements × 2 distractor densities). The study 
was balanced using a Latin square for the hand arrangements, which 
was repeated twice. In the frst Latin square, the participants frst 
have the high distractor density for each hand condition, then the 
low; the second Latin square was low frst for each hand condition, 
then high. This gave us a total of six permutations, which was 
repeated three times for the 18 participants. 

4.2 Measures 
We report the completion time for each trial, defned as the time in 
seconds from when the user presses a controller button to start the 
trial until they press the same button to make a selection. We also 
report physical motion, defned as the distance in centimeters that 
the controller is moved during a trial. Lastly, we report error rates, 
an error defned as when the user selects a distractor instead of a 
target. 

To examine whether the subjective experience of efciency cor-
relates with our quantitative measures, we also include a ques-
tionnaire. We use an 11-question user satisfaction questionnaire 
(normalized to a 7-point Likert scale) used in previous work [23], 
adapted from QUIS [42] and the ISO 9241-9 standard for pointing 
devices. 

4.3 Apparatus 
We used an HTC Vive VR HMD with a display resolution of 2160×1200, 
90 HZ refresh rate, and a 110° feld of view. Prototype SteamVR 
Knuckles DV controllers were used as hand-held input devices. 

We powered the VR application with a Windows 10-based PC 
with an NVidia GeForce 1070 GPU, an Intel i7-8750H CPU @ 
2.2GHz, and 32 GB of DDR4 RAM. The VR application was im-
plemented using Unity (version 2019.1.10f) and the SteamVR Unity 
plugin (version 2.3.2). 

4.4 Participants 
We recruited 18 participants (9 female), age range 21-35, mean = 
27, SD = 4.07. To control the potential infuences of handedness, 
we only recruited right-handed participants. As we use a red-green 
target scheme, we also excluded persons with color blindness from 
the study. Participants were required to pass a color blindness 
test online when signing up for participation. The test was re-
administered on-site before running the study. 

Participants were recruited through social media groups and 
email lists for people interested in participating in scientifc exper-
iments. Each participant received the equivalent of €15 for their 
time. 

4.5 Procedure 
Upon completing the color-blindness test, we explained the purpose 
of the experiment to the participant, had them sign an informed con-
sent form, and placed them into VR. The participant was instructed 
to move the virtual hands with their right hand and was allowed to 
move the virtual hands around and observe the controllers’ fnger 
tracking before the frst trial was started. 

The participant stood 2m away from the bounds of the targets 
on a fxed spot marked on the foor. The full arrangement of targets 
was within the feld of view of the participant. This confguration 
kept the hand activity within the participant’s feld of view. 

Before each trial, there was a reset step where the participant 
must resume a default waist-level resting position while the hands 
were not shown. Only when the participant pressed the trigger 
would the next trial begin. This follows previous study designs 
[28] and alleviates potential motion bias from hand placement after 
selection. 

When a trial began, the virtual hands appeared centered in 
the target space, and the intended target became green. All other 
spheres were red and served as distractors for this trial. The par-
ticipant was tasked with moving any hand to the intended target 
and selecting it by pressing the controller’s trigger. Each hand and 
target has a spherical collider which encapsulates it. Targets are 
selected when a hand and target collider intersect and the user 
presses a trigger on the controller. The hand size is the default hand 
size in the SteamVR framework, and targets have a 15cm diameter. 
Though the size of the hand will infuence selection, the impact is 
consequently balanced across participants. 

After 96 selections per distractor density, the hand condition 
ended. The participant flled out a questionnaire outside of VR, had 
a one minute break, and started the next hand condition. 

5 FIRST STUDY RESULTS 
This section describes the outcome of the frst study. We frst discard 
the frst round of 8 trials for each condition to balance initial training 
efects (8.33% of the total number of trials). We then discard outliers, 
defned as data points that fall outside 1.5 times the interquartile 
range for completion time and motion. 4.6% outliers were discarded 
for completion time and 2.8% outliers were discarded for motion. 
We take these to represent trials where some external factor, such 
as momentary loss of tracking, caused participants to idle or move 
far more than they otherwise would. 
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5.1 Completion Time 
Completion time is defned as the time in seconds it took for a 
participant to complete one trial successfully. This time is calcu-
lated from the diference between the moment when the user ends 
the resting phase by pressing the trigger and the moment when 
the user successfully selects the target. Figure 3 shows the mean 
completion time per trial. The overall mean completion times were 
1.51s for the single hand in high density and 1.48s in low density, 
1.45s for the grid in high density and 1.38s in low density, as well 
as 1.43s for the cube in high density and 1.30s for low density. We 
performed two-way repeated measures ANOVAs for the trial du-
ration, hand arrangement and distractor density. This revealed a 
signifcant efect of hand arrangement (F2,34 = 3.56, p < .04) and 
distractor density (F1,17 = 7.59,p < .02). There were no interaction 
efects. A post hoc analysis of the hand arrangements using pair-
wise comparisons with Bonferroni correction showed signifcant 
diferences between all three arrangements (p < 0.01). Users were 
5.62% faster with the grid arrangement and 9.46% faster with the 
cube arrangement, compared against the single hand. 

1.43
1.30

1.45
1.38

1.51 1.48

0.0

0.5

1.0

1.5

2.0

Single Grid Cube
Condition

Tr
ia

l d
ur

at
io

n 
(s

)

Density
High
Low

Figure 3: Mean trial completion time in seconds per hand ar-
rangement and distractor density. Error bars represent 95% 
confdence intervals. 

Trial completion times generally decreased with a higher amount 
of hands. This efect was larger in the low density than the high. This 
can be attributed to the queue algorithm we use for disambiguation, 
where an increase of hands will also lead to an increased time spent 
in the queue to cycle to the intended hand. 

5.2 Error Rate and Disambiguation 
An error is a trial in which the participant selected a distractor 
and not the target. The error rate is defned as the percentage of 
trials in which an error occurred. Table 2 shows the mean error 
rate. Participants had no errors in the one-handed arrangement, a 
mean error rate of 0.17% in the grid arrangement in high density 
and 0.04% in low density, as well as a mean error rate of 1.79% in 
the cube arrangement in high density and 0.25% in the low density. 

The error rates are low across hand arrangements and densi-
ties. Interestingly, participants did not have a single error in the 

single-hand arrangement, suggesting a perfect understanding of 
the task, but something specifc to the more-handed conditions 
causing trouble with the selection. 

We observed that whenever errors did occur in the other hand 
arrangements, it tended to correlate with the activity of the queue 
algorithm that we use as a disambiguation technique. To demon-
strate this, Table 2 also includes the overall percentage of trials 
in which the queue is active. To better understand how the queue 
afects the error rate, we further analysed how many error trials 
had an active queue in the grid and cube arrangements and the two 
distractor densities. The results of this can be seen in Figure 4. 
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Figure 4: Percentage of errors during which the queue was 
active. 

While the overall queue activity was quite low as seen in Table 2, 
Figure 4 shows that it was active during at least half of every error 
trial, with notably higher activity in the errors in the high density. 

5.3 Motion 
Motion is defned as the total distance in centimeters that the par-
ticipant moved the physical controller within each successful trial. 
Figure 5 shows the mean motion per trial. The overall mean dis-
tances moved were 36.64cm for the single hand in high density and 
35.88cm in low density, 25.74cm for the grid in high density and 
24.62cm in low density, 17.40cm for the cube in high density and 
15.47cm for low density. 

Two-way repeated measures ANOVAs for motion, hand arrange-
ment and distractor density showed a signifcant efect of hand 
arrangement (F2,34 = 397.34,p < .001) and distractor density 
(F1,17 = 20.91, p < .001). There was no interaction efect. A post hoc 
analysis of the hand arrangements using pair-wise comparisons 
with Bonferroni correction showed signifcant diferences between 
all three arrangements (p < 0.01). Users moved 30.29% less with 
the grid arrangement and 53.94% less with the cube arrangement, 
compared against the single hand. 

As hypothesized and per Fitts’ law [14, 32], as well as prior 
research in adapting it to three-dimensional spaces [4, 46], partic-
ipants generally moved less when the distance from the nearest 
hand to the intended target was lower. 
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Arrangement 
Single Grid Cube 

Mean SD Mean SD Mean SD 
Terrible (1) — Wonderful (7) 6.17 0.79 6.17 0.62 5.94 0.73 
Frustrating (1) — Satisfying (7) 6.06 1.16 6.33 0.59 5.94 0.80 
Dull (1) — Stimulating (7) 5.83 0.92 5.50 1.29 5.44 1.04 
Difcult (1) — Easy (7) 6.17 1.25 6.33 1.03 6.28 0.89 
Inadequate power (1) — Adequate power (7) 6.06 0.87 6.11 0.90 6.06 0.94 
Rigid (1) — Flexible (7) 6.06 1.11 5.94 1.16 5.61 1.58 
Smoothness during operation was: very rough (1) — very smooth (7) 6.17 0.92 6.11 0.83 6.28 0.67 
The mental efort required for operation was: too low (1) — too high (7) 3.06 1.30 2.67 1.19 3.28 1.18 
The physical efort required for operation was: too low (1) — too high (7) 3.17 1.20 3.00 1.37 2.94 1.16 
Accurate pointing was: easy (1) — difcult (7) 2.28 1.41 2.17 1.29 2.28 1.27 
General comfort was: very uncomfortable (1) — very comfortable (7) 6.17 0.86 6.00 1.08 6.22 0.73 

Table 1: Subjective satisfaction of participants for each hand arrangement. Questionnaire from Hornbæk & Hertzum [23], 
normalized to a 7-point scale. 

Distractor Density 

High Low 
Arrangement Single Grid Cube Single Grid Cube 

Error Rate (%) 0.0 0.17 1.79 0.0 0.04 0.25 
Queue Active (%) 0.0 1.87 7.33 0.0 0.41 2.08 

Table 2: Mean error rates and overall queue activity in per-
centage across hand arrangements and distractor densities. 
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Figure 5: Mean trial motion per hand arrangement and dis-
tractor density. Error bars represent 95% confdence inter-
vals. 

Surprisingly, this efect was present even in the single-hand 
condition and therefore cannot be attributed entirely to the queue. 
We observed that users were prone to moving the hand around 
targets during the single-hand condition specifcally, which explains 
this. 

5.4 Subjective Satisfaction 
Table 1 shows the data collected from the subjective satisfaction 
questionnaires administered following each hand arrangement. We 
used the aligned rank transform for non-parametric factorial analy-
ses by Wobbrock et al. [49] to evaluate the efects of the on the TLX 
measures. This revealed no signifcant efects, so we can only re-
port on trends. Looking at the means, for the frst six questions, the 
Ninja Hands arrangements generally outperform the single hand. 
Smoothness sees the grid arrangement score slightly lower than 
the single hand. Mental and physical efort trends towards the ideal 
center for those scores (middle, or 3.5). However, mental efort for 
the grid condition ranks notably (>10%) lower than the other two. 

6 SECOND STUDY 
Our initial study showed that as the number of hands increased, the 
motion exerted and time taken to select a target decreased. While 
those results demonstrate performance improvements for ninja 
hands, it is unclear if these benefts can be retained with higher 
numbers of hands. While the frst study investigated performance in 
a relatively small target space, we want to better understand of how 
performance translates to larger distances, and larger arrangements 
of targets. We implement a follow-up study that seeks to determine 
the impact of these factors. 

6.1 Design 
We adapt the target selection task from the frst study, taking place 
in the same 10m×5m×10m environment with targets flling the 
room (Figure 6). We manipulate the hand count, and control the 
distance to the targets. 

We extend the cubic hand arrangement, evaluating hand count 
by comparing one hand against cubes of 2×2×2 (8), 3×3×3 (27), and 
4×4×4 (64) Ninja Hands. The hands are distributed across the room 
so that they fll out the space regardless of the number of hands; this 
is done by subdividing the space into a number of cuboids equal to 
the number of hands and placing each hand in the center of such 
a cuboid. This is the three-dimensional equivalent of the pattern 
used in ninja cursors [28]. This pattern causes the eight hands to 
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Figure 6: The frst of eight target and distractor layouts in 
the second study, seen from the top corner of the room. Par-
ticipants stand on the red mark on the foor at the back of 
the room. 

be distributed 5m apart, the 27 hands are 3.33m apart, and the 64 
hands are 2.5m apart. All hands have a fxed movement gain of 10x 
across all conditions. This gain was decided based on a criterion 
that the single hand centered in the room can comfortably reach 
any target in the room. 

The targets are placed at one of four distances from the center 
of the room in a random direction. These distances are 1.5m, 3m, 
4.5m, and 6m; this corresponds to 20%, 40%, 60%, and 80% of the 
half-diagonal of the room (7.5m). We generate three targets at each 
distance, discarding those that fall outside the bounds of the room. 
Then, we randomize their selection order. This process is repeated 
eight times for 8 × 12 = 96 individual targets, and is fxed between 
participants, to minimize the efects of any one confguration. As 
in the frst study, we populate the rest of the room with distractors 
using Poisson disk sampling [10] to simulate a busy target space, 
however only at one density; 10% of the diagonal of the room (1.5m). 
This approach to target generation ensures a variety of depths and 
angular sizes for hands and targets, and ensures a greater variety 
of these factors than in the frst study. 

Each participant selects all targets in a fxed order using the 
diferent hand counts in the four conditions. We balance the order 
of the conditions between participants using a Latin square. Alto-
gether, this gives us 384 observations (96 targets × × 4 hand counts) 
per participant. 

6.2 Measures 
As in the frst study, we report the completion time for each trial, 
movement of the physical controllers, and error rates. 

We use NASA TLX [19] to measure how subjective workload is 
afected by diferent hand counts. This replaces the user satisfaction 
questionnaire [23] from the frst study, since the only score that 
difered in that data was mental load for one of the more-handed 
conditions for one of the more-handed conditions (see Table 1). 
NASA TLX is one of the most common questionnaires for measur-
ing subjective workload [18, 19]. 

6.3 Apparatus 
The apparatus is as in the frst study. 

Figure 7: The four numbers and arrangements of hands used 
in the second study, centered in the room and seen from 
the top corner. From top left: 1, 8, 27, and 64 hands. The ar-
rangement is the three-dimensional equivalent of the even 
arrangement used in ninja cursors [28], adapted to a non-
cubic environment. The user stands on the red mark on the 
foor. 

6.4 Participants 
We recruited 20 participants (9 female), age range 21-48, mean = 
28.6, SD = 6.2. We followed a similar recruitment procedure as in 
the frst study; participants must not have participated in that study. 

6.5 Procedure 
The procedure is similar to the frst study. However, there are three 
changes to accommodate the new design. 

First, between each condition, participants fll out the NASA TLX 
questionnaire [18, 19] instead of the user satisfaction questionnaire 
[23]. 

Second, inside the virtual environment, the participant is placed 
on a red marker on the foor in the back center of the room, moved 
back a bit from the target space to ensure that as many hands as 
possible are visible when looking forward, even in the many-handed 
conditions. 

Third, as in the frst study, participants have a reset step between 
each trial. The hands are shown between each step, to minimize 
time spent fnding the hands. 

7 SECOND STUDY RESULTS 
This section describes the results of the second study. We frst 
discard the frst round of 12 trials for each condition to balance 
initial training efects (12.5% of the total number of trials). We then 
discard outliers, defned as data points that fall outside 1.5 times the 
interquartile range for completion time and motion. 1.1% outliers 
were discarded for completion time and 0.6% outliers were discarded 
for motion. We take these to represent trials where some external 
factor, such as momentary loss of tracking, caused participants to 
idle or move far more than they otherwise would. 
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7.1 Completion Time 
Completion time is calculated as the diference between the moment 
when the participant ends the resting phase by pressing the trigger 
and the moment when the participant successfully selects the target 
by pressing the trigger when a hand is touching it. 

The raw mean completion times were 3.59 seconds for the 1-
handed condition, 3.66 seconds for the 8-handed condition, 3.61 
seconds for the 27-handed condition, and 3.69 seconds for the 64-
handed condition. Since we seek to understand how much of this 
time was actually spent moving, we isolate the time spent deciding 
which hand to use. To accomplish this, we create a flter that for 
each trial logs how long it takes for the participant to move the 
controller more than 10 cm from where they started. We make the 
assumption that participants do not move much until they have 
decided how to move. 

Isolating the decision-making time reveals a linear increase in 
decision-making time as we increase hand count, as seen in Figure 8. 
The mean decision time is 1.38 seconds in the 1-handed condition, 
1.67 seconds in the 8-handed condition, 1.97 seconds in the 27-
handed condition, and 2.26 seconds in the 64-handed condition. 
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Figure 8: Mean trial duration for the second study in sec-
onds, broken down into decision-making time and move-
ment time. Error bars represent 95% confdence intervals for 
decision-making time and movement time. 

We reason that the linear relationship between hand count and 
decision-making time may be explained by the number of hands 
adjacent to the optimal hand increasing by a like amount when 
using our arrangement, regardless of the hand count. 

Adjusting the overall trial duration by each trial’s decision-
making time tells us how much time was spent moving. This re-
veals a signifcant reduction in time spent moving as hand count 
increases, as shown in Figure 8 and isolated in Figure 9. The move-
ment time is 2.17 seconds in the one-handed condition, 2.02 seconds 
in the 8-handed condition, 1.68 seconds in the 27-handed condition, 
and 1.42 seconds in the 64-handed condition. 

We performed one-way repeated measures ANOVAs for over-
all trial duration, decision-making time, and movement time. This 
revealed no signifcant efect of hand count on overall trial dura-
tion (F1,3 = 1.70,p = .21), but a signifcant efect of hand count 

Figure 9: Mean movement time per condition in the second 
study. Error bars represent 95% confdence intervals. 

on decision-making time (F1,3 = 68.08,p < .01) and movement 
time (F1,3 = 34.52, p < .01). This demonstrates that while overall 
trial durations are comparable across conditions, there is an ex-
pected trade-of between time spent deciding which hand to use 
and reduces physical motion exerted. 

7.2 Error Rate and Disambiguation 
An error is a trial in which the participant selected a distractor 
and not the target. The error rate is defned as the percentage of 
trials in which an error occurred. Table 3 shows the mean error rate 
and queue activity in the second study. We see a similar pattern 
in error rate as in the frst study. Participants had no errors in 
the one-handed arrangement, a mean error rate of 0.05% with 8 
hands, 0.23% with 27, and 0.48% with 64. Like the frst study, this 
suggests that participants understood the task, but something in the 
more-handed conditions caused the occasional wrongful selection. 

Condition 
1 8 27 64 

Error Rate (%) 0.0 0.05 0.23 0.48 
Queue Active (%) 0.0 0.38 1.81 3.95 

Table 3: Mean error rates and overall queue activity in per-
centage across the four hand conditions in the second study. 

We again see similar correlations between queue activity and 
error rates, though overall error rates are very low. 

Figure 10 shows the percentage of error trials during which 
the queue was active. Curiously, the eight-handed condition has a 
higher activity than the other two more-handed conditions, though 
this can likely be explained by a very small sample size (0.05% of 
trials in the 8-handed condition were errors), which allows for large 
variation in this measure with just a few trials. Overall, these data 
indicate that disambiguation did not contribute much to target 
selection time, even with 64 hands and many targets arranged in 
the room per the confguration in the study. 
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Figure 10: Percentage of error trials during which the queue 
was active in the second study. 

7.3 Motion 
Motion is defned as the total distance in centimeters that the par-
ticipant moved the physical controller within each successful trial. 
Figure 11 shows the mean distance moved per trial for the four con-
ditions, as well as the optimal raw distance, defned as the lowest 
possible motion required to reach the target, not accounting for 
any queue activity that may increase motion distance. Participants 
moved 74cm on average in the 1-handed condition, 60cm in the 
8-handed condition, 46cm in the 27-handed condition, and 40cm in 
the 64-handed condition. 
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Figure 11: Mean distance moved per condition. The black 
line represents the optimal raw distance. Error bars repre-
sent 95% confdence intervals. 

A one-way repeated measures ANOVA showed a signifcant 
efect of hand count on motion (F1,3 = 19.48, p < .02). As expected, 
participants moved signifcantly less with an increased hand count, 
showing that one of the main value propositions of Ninja Hands 
holds even at higher hand counts. Participants do move more than 
the optimal distance; however, the decision-making time is included 
in these data (which by extension comes any initial motion while 
locating the target), as is any potential queue activity on the way. 

Since we apply a universal scaling factor of 10 times to the mapping 
to keep conditions as comparable as possible, this also leads to 
some universal loss of precision; one of the critical benefts of Ninja 
Hands is the ability to reduce this scaling factor and still reach 
distant targets. 
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Figure 12: Mean NASA TLX results per scale and overall 
weighted scores, for each condition. Error bars represent 95% 
confdence intervals. 

7.4 NASA TLX 
Table 4 and Figure 12 show the results of the NASA TLX. We used 
the aligned rank transform for non-parametric factorial analyses 
by Wobbrock et al. [49] to evaluate the efects of the hand con-
ditions on the TLX measures. The only signifcant efect was on 
physical demand (F1,3 = 7.21,p < .001). This corroborates our 
motion data. For the other measures, there are only general, but 
insignifcant, trends. For our main fnding, as hypothesized, overall 
workload decreases from the 1-handed (47.71) to the 8-handed (44) 
and 27-handed (39.96) conditions, following a slight increase for 
the 64-handed (41.08) condition. A similar trend of a reduction fol-
lowed by a slight increase for the 64-handed condition can be seen 
individually in efort, frustration, temporal demand, and mental de-
mand. Curiously, participants feel more performant in the 1-handed 
(34.25) condition than the 8-handed (39.25) and 27-handed (37.75) 
conditions, though the 64-handed condition (35) sees a slight gain 
in this measure. 

Altogether, these data demonstrate that though more-handed 
conditions trend toward a lower workload, this gain seems to even 
out and potentially reverse at higher hand counts due to the expe-
riences of efort, frustration and mental demand that can be linked 
to the increased number of hands to choose from and the increase 
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in time spent making this decision (Figure 8). However, the only 
signifcant efect is for the experience of physical demand, which 
correlates with the actual physical motion exerted (Figure 11). 

8 DISCUSSION 
We have described the Ninja Hands technique, evaluated it through 
two studies, and shown that it can achieve a signifcant reduction 
in the physical motion exerted. However, we only found signifcant 
gains in target selection speed in a smaller environment in front 
of the user. In a larger environment with more hands, we found 
a signifcant decrease in time spent moving with more hands, re-
sulting in a corresponding increase in time spent deciding which 
hand to use. Thereby, overall selection speeds were comparable 
across hand counts. Lastly, while the subjective workload was lower 
with more hands, the results indicate that this beneft reverses with 
the increase from 27 to 64 hands. More hands come at a cost. This 
section discusses how these fndings might be applied to future 
implementations of the technique. 

8.1 Improving Target Selection 
Our results show that having a smaller number of hands in a smaller 
environment, such as in the frst study, can reduce target selection 
speed. Further, the results indicate that extending this to a larger 
environment with more hands, as in the second study, results in 
stable target selection speed without signifcant diference across 
conditions. If the goal is to reduce target selection speed, using a 
small number of hands in a smaller environment is optimal. An 
exponential (n3) increase in the number of hands only causes a 
linear increase in decision-making time. This relation is likely due 
to the fact that the number of hands immediately surrounding the 
optimal hand is not increasing exponentially, even if the overall 
number of hands in the environment does. Thus, while simply 
flling the environment with hands does not improve selection 
speed, using multiple smaller clusters of hands in the scene might 
be benefcial. 

For example, imagine a typical VR scene such as a living room, 
where objects are spread across tables, couches, and shelves (Figure 
1). A specialized hand arrangement can be generated based on the 
layout of the objects; the objects can be grouped using a clustering 
algorithm and then based on the radius of these clusters, a number 
of hands can be generated so that the user can reach all objects 
comfortably. Further, this number can be optimized, so that little to 
no scaling factor is needed; participants in the second study moved 
more than they had to in all conditions, suggesting that having a 
lower scaling factor is ideal. The ability to lower the scaling factor, 
while still allowing all objects to be easily reached, is a key beneft 
of Ninja Hands. However, in a typical VR scenario, the layout of 
items will change. When selecting an object, for instance, users 
will typically move it, modifying the cluster. Of course, the scaling 
factor can be modifed dynamically by recalculating the clusters, 
but having the mapping of hands change on the fy might make 
controlling the hands difcult. 

The results indicate that when the scaling factor is constant 
across hand counts, higher hand counts still select targets faster 
than fewer hands in a smaller environment. Further, higher scaling 
factors appear to lead to lower precision. A stable, low scaling 

factor appears ideal. Therefore, an alternate approach would change 
the hand count instead of the scaling factor, so that hands are 
dynamically added or removed to each cluster as the confguration 
of objects changes. We envision an implementation of Ninja Hands 
wherein these clusters of smaller hand counts are generated based 
on the object layout in the environment. If the clusters change 
due to manipulation of the objects, the hand count is dynamically 
updated to ensure that all targets can be comfortably reached. 

8.2 Improving Existing Techniques 
Ninja Hands can be integrated with existing selection techniques 
and ofers other improvements than just target selection speed in 
smaller environments. A reduction in the physical motion exerted 
can be reliably obtained by increasing hand count based on the 
arrangements used in our studies, and overall lower subjective 
workloads in target selection can be gained, which might beneft 
other techniques. For example, we envision an implementation 
where the user can activate the Ninja Hands with the press of a 
button, which multiplies their hand and moves the hands into an 
even arrangement in the environment to achieve reduced motion 
exertion and workload. Then, once the user has made their selection, 
the object is moved back to the user’s perspective in their hand; 
alternatively, it could be integrated with teleportation, so that the 
user is teleported adjacent to the objected selected using Ninja 
Hands. 

8.3 Improving Disambiguation 
In our studies, disambiguation played a limited role. Given the 
arrangements and numbers of hands and targets used in the two 
studies, the queue algorithm was rarely used in the many-hand 
conditions. Similar work with cursors in desktop environments, 
such as ninja cursors [28], use disambiguation more frequently. It 
is a limitation of our study designs that limited disambiguation 
happened. Diferent ratios between the placement and density of 
hand and target arrangements might cause more problems with 
disambiguation. For example, our second study shows that Ninja 
Hands can perform in large virtual environments, which is an im-
provement over existing hand-based techniques. However, had the 
scene in that study contained very dense clusters of targets, more 
hands would enter the queue and the queue would take longer to 
resolve. 

Recent work comparing how selection techniques perform in 
high-density conditions [30] has demonstrated how selection mech-
anisms similar to bubble cursor [16, 48] can be integrated with ray-
based selection to function well in scenes with high target density. 
However, even if the ray is used to move a hand, this method of 
pointing to control the hand is quite diferent to using natural hand 
motion to reach targets, which is a potential advantage of the Ninja 
Hands technique. We envision an integration of these two concepts 
that retains their individual benefts. VR environments sometimes 
contain clusters of objects spaced apart, such as tables and shelves, 
each containing numerous objects that the user may interact with. 
Naively flling such an environment with hands would cause is-
sues with occlusion, distraction, and disambiguation. Instead, one 
arrangement of hands could be placed at each cluster of objects, 
which should allow each cluster to retain similar benefts in motion 
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Condition 
1 8 27 64 

Mean SD Mean SD Mean SD Mean SD 
Efort 49.20 25.96 41.25 25.17 40.25 24.62 42.00 25.41 
Frustration 33.50 26.41 30.25 22.73 27.50 20.29 28.50 21.70 
Mental Demand 44.50 27.76 43.75 26.94 38.50 23.68 40.50 26.35 
Performance 34.25 20.47 39.25 20.81 37.75 30.19 35.00 28.19 
Physical Demand 51.75 28.34 42.00 27.11 35.75 23.18 31.50 26.11 
Temporal Demand 45.75 30.18 42.00 29.17 35.75 26.47 41.25 25.12 
Overall Score 47.71 23.68 44.00 22.80 39.96 19.72 41.08 23.32 

Table 4: NASA TLX results per scale and overall weighted scores, for each condition. 

exerted and selection speed as in our frst study. The issue, then, be- no reason to expect that the technique would not translate to bi-
comes how to disambiguate between clusters of hands, so that only manual interaction, it could be interesting to investigate specifc 
one cluster is active at a time. For this purpose, a ray-based heuristic interactions enabled by using two physical hands. It could perhaps 
could be used, such as the gaze-fltered bubble ray as suggested be an intuitive way to apply variable mapping to the hands, so that 
in [30], as our decision-making results indicate that users take the one physical hand controls distant virtual hands with a non-linear 
time to look for the hand they want to use before attempting to use mapping function, while the other physical hands controls closer 
it. virtual hands with a constant mapping. 

9 CONCLUSION 
8.4 Limitations We investigate the concept of using many distributed hands in VR 
There are three key limitations to our work. First, a well-established to improve target selection at a distance. We introduce Ninja Hands, 
beneft of using hands in VR is their positive efects on aspects of an interaction technique that maps one physical hand to many dis-
embodiment, often discussed as the sum of body ownership, self- tributed virtual hands. We examine the technique in two empirical 
location, and agency [25, 29]. We do not investigate embodiment studies and fnd signifcant reductions in motion exerted, as well as 
in this work. Ownership of a full body has been achieved from a conditional reductions in target selection time. We also fnd a trade-
third-person perspective given synchronous visuo-tactile stimula- of between decision-making time and time spent moving, as well 
tion [7], and this has even been extended to two bodies [21]. The as a beneft of reduced workload that our data suggest reverses at 
sense of self-location is also malleable and can be consistently ma- higher hand counts. We discuss how these fndings can contribute 
nipulated from a third-person perspective [33], which also extends towards future versions of the Ninja Hands technique and can help 
to two bodies [21]. However, it is unclear if these fndings apply to improve target selection in VR. Altogether, our work introduces 
such great distances, numbers, and foating hands as investigated many hands for target selection in VR and outlines benefts and 
in our work. For future work, we suggest investigating how the drawbacks associated with this concept. 
synchronous use of many hands that are distantly removed from 
the user’s perspective afects the sense of ownership, whether this ACKNOWLEDGMENTS 
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