
The International Journal of Virtual Reality, 2007, 6(4):43-54

43

Affective Multimodal Control of Virtual
Characters

Abstract—In this paper we report about the use of computer

generated affect to control body and mind of cognitively modeled
virtual characters. We use the computational model of affect
ALMA that is able to simulate three different affect types in
real-time. The computation of affect is based on a novel approach
of an appraisal language. Both the use of elements of the appraisal
language and the simulation of different affect types has been
evaluated. Affect is used to control facial expressions, facial
complexions, affective animations, posture, and idle behavior on
the body layer and the selection of dialogue strategies on the mind
layer. To enable a fine-grained control of these aspects a Player
Markup Language (PML) has been developed. The PML is
player-independent and allows a sophisticated control of
character actions coordinated by high-level temporal constraints.
An Action Encoder module maps the output of ALMA to PML
actions using affect display rules. These actions drive the real-time
rendering of affect, gesture and speech parameters of virtual
characters, which we call Virtual Humans.

Index Terms—Virtual characters, affect computation, multi-
modal behavior markup language.

I. INTRODUCTION

The VirtualHuman project aims at developing interactive
virtual human-like characters that can be controlled and
animated in real-time. One of the main goals was therefore the
specification and implementation of a computational model
that takes all relevant aspects of the human behavior into
account. This includes speech, gestures, postures,
lip-synchronous mouth movements, eye and head movements,
and the display of emotions, e.g. through tears or through a
change in complexion. All these different modalities have to be
combined and properly synchronized to generate a consistent
and life-like behavior.

In the VirtualHuman system the behavior control mechanism
can be characterized by two major characteristics: (1) Using
different modules to control different behavior aspects and (2)
Using a stepwise refinement of action specifications to
minimize dependencies between components. The
communicative behavior of all characters in a scenario is
controlled by the Conversational Dialog Engines (CDEs); see

chapter “Multiparty Conversation for Mixed Reality” in this
volume. Each CDE uses “A Layered Model of Affect” (ALMA)
to compute the affective state of a virtual character based on the
dialog contributions of the participants (see Fig. 1). Based on
the specified personality profile and a set of appraisal rules,
ALMA computes emotions and their intensity as well as a
character’s current mood. This information is then used by a
virtual character’s CDE to change the course and style of the
conversation. In addition and parallel to the CDEs the affect
output produced by ALMA is processed by the Action Encoder
module to modify the nonverbal behavior associated with a
character’s affective state. The Action Encoder serves as a post
processing component for both the CDE and ALMA. It is
responsible for the action encoding, i.e. the refinement of
character and object actions and for the timing and
synchronization of these actions. The CDEs specify the
behavior of characters and objects in the scenario using the
XML-based Player Markup Language (PML). The high-level
behavior specifications in PML documents are processed by the
Action Encoder. It selects an appropriate animation based on a
gesture lexicon (gesticon) and uses a text-to-speech (TTS)
system to generate the audio file and to obtain information
about the phoneme types and their duration. The result is an
enriched PML document in which all actions are properly
synchronized. The document is send to the 3D player for
execution. This processing path is depicted in the lower half of
Fig. 1.

Manuscript Received on March 16, 2007.
Martin Klesen works as a research scientist in the Intelligent User Interfaces

department at the German Research Center for Artificial Intelligence (DFKI) in
Saarbrücken. E-Mail: rumpler@dfki.de

Patrick Gebhard studied computer science and physics at the University of
Saarbrücken and received his Diploma degree in 1999. His research interests
are affective intelligent virtual agents and computational models of affect based
on cognitive theories. E-Mail: Patrick.gebhard@dfki.de.

Fig. 1. Interplay between the VirtualHuman modules ALMA, CDE, and Action
Encoder.

The PML actions generated by the CDEs typically comprise

a sequence of verbal utterances, accompanying gestures, but
might also contain action specifications for multimedia objects.
The CDE waits until all actions have been performed before
sending the next PML document. The update frequency lies
therefore somewhere between 1 and 30 seconds and depends
mainly on the length of the utterances. The affective state of
characters however is periodically updated by ALMA every

Martin Klesen and Patrick Gebhard1

The International Journal of Virtual Reality, 2007, 6(4):43-54

44

500 milliseconds to simulate emotion decay and mood changes
over time. The Action Encoder generates with the same
frequency PML actions that constantly change the facial
expression, complexion, and posture (idle behavior) of the
virtual characters. This ensures smooth transitions between
facial animations and complexions. This processing path is
depicted in the upper half of Fig. 1.

It’s important to note that the PML actions produced by the
two instances of the Action Encoder control different aspects of
a character’s behavior. The combination of the real-time
computation of affect with the autonomous and plan-based
generation of the communicative behavior enables the affective
multimodal control of virtual characters in the VirtualHuman
system. In the following sections the Affect module, the Player
Markup Language, and the Action Encoder are described in
detail.

II. AN AFFECT MODULE FOR VIRTUAL HUMANS

The employment of virtual humans as an interface in
human-computer interaction scenarios makes high demands on
their believability. This is mainly founded in the sophisticated
embodiment of Virtual Humans that implies human-like
conversational abilities and behavior aspects. As known from
other projects employing embodied virtual characters, like
MRE [1, 2], COSMO [3], Émile [4], Peedy [5], Greta agent [6]
and in the SCREAM framework [7], affect successfully helps
controlling behavior aspects. When analyzing them according
to their temporal characteristics, there are short-term behavior
aspects, like facial expressions, gestures, or the wording of
verbal expressions. Also, there are medium-term and long-term
aspects, like the process of making decisions, or the motivation
of characters. The latter are traditionally implemented by dialog
systems like the Conversational Dialog Engine (CDE) [8]. And,
there are behavior aspects that consist of mixed-term aspects,
like a character’s idle behavior that includes for example eye
blink (short-term) and medium term posture changes. Our
approach to control such behavior aspects relies on a
computational model of affect [9] that provides different affect
types, which are described in the next section.

2.1. Affect Taxonomy

The affect module is designed to simulate affect types as they
occur in human beings. As suggested by Krause [10] affect can
be distinguished by the eliciting cause, the influence on
behavior, and its temporal characteristics. Based on the
temporal feature, we use the following taxonomy of affect:

• Emotions reflect short-term affect that decays after a short

period of time. Emotions influence facial expressions,
facial complexions (e.g. blush), and conversational
gestures.

• Moods reflect medium-term affect, which is generally not
related with a concrete event, action or object. Moods are
longer lasting affective states, which have a great
influence on humans’ cognitive functions [11, 12].

• Personality reflects long-term affect and individual
differences in mental characteristics [13].

As known by the research of psychologist those different
types of affect naturally interact with each other. Personality
usually has a strong impact on the emotions intensities [14, 15].
The same applies to moods [12]. With our computational model
we want to simulate the interaction of the different affect types
in order to achieve a more consistent simulation of affect.

2.2. ALMA

ALMA is a computational model for the real-time simulation
of affect types that human beings can experience. Based on a
real-time cognitive appraisal of the virtual environment
different affect types are simulated in a hierarchical generation
process. This inspired us to name the model ALMA (see Fig. 2),
which stands for A Layered Model of Affect.

Fig. 2. Virtual Human ALMA personality configuration dialog and impact on
emotion intensities.

2.2.1 Emotions

Our work is based on the computational model of emotions
(EmotionEngine) described in [16, 17]. It implements the
model of emotions developed by the psychologists Ortony,
Clores, and Collins (OCC model of emotions) [18] combined
with the five factor model of personality [12] to bias the
emotions’ intensities. All five personality traits (openness,
conscientiousness, extraversion, agreeableness, and
neuroticism) influence the intensities of the different emotion
types. We therefore adopted essential psychology research
results on how personality influences emotions to achieve a
more human-equivalent emotion simulation. Watson and Clark
[15] and Becker [14] have empirically shown that personality,
described through the big-five traits, impacts the intensity of
emotions. They discovered, e.g. that extravert people
experience positive emotions more intensely than negative
emotions. In our computational model this is realized by the
change of an emotion’s basic intensity, the so-called emotion
intensity bias. Note that, the intensity of elicited emotions
cannot be lower than the emotion intensity bias. When the

The International Journal of Virtual Reality, 2007, 6(4):43-54

45

personality is defined by a graphical user interface one can
directly observe the impact on the emotions intensity bias, see
Fig. 2.

Fig. 2 consists of two screen shots showing the direct impact
of the change of the extravert personality trait on emotions’
intensity bias. In the example the extravert trait value is
increased by moving the slider to the right side. As a
consequence the basic emotion intensities of positive emotions
increase. Note that not all emotions are biased in the same way.
This depends on the fact that personality traits potentially bias
emotion intensities at different strengths. Also the intensity
biases are influenced by a Virtual Human’s current mood, see
next section.

The OCC cognitive model of emotions is based on the
concepts of appraisal and intensity. The individual is said to
make a cognitive appraisal of the current state of the world.
Emotions are defined as valenced reactions to events of
concern to an individual, action of those s/he considers
responsible for such actions, and objects/persons. The
EmotionEngine is able to compute all 24 emotions that are
defined by the OCC theory.

Fig. 3. Virtual Human ALMA configuration dialog showing emotion and mood
simulation parameters.

The intensity of emotions underlies a natural decay, which

can be configured by several decay functions (linear,
hyperbolic, and exponential). This and other individual and
static character information, like personality, can be defined for
each Virtual Human by a graphical user interface that is shown
in Fig. 3.

2.2.2 Moods

The employed computational model of moods is based on
the psychological model of mood (or temperament) proposed
by Mehrabian [19]. Mehrabian describes mood with the three
traits pleasure (P), arousal (A), and dominance (D). Each trait
represents a specific mood component. Pleasure describes how
much an individual enjoys the actual situation. Arousal stands

for the excitement of an individual in the actual situation.
Dominance describes up to what extend an individual controls
the actual situation. The three traits are nearly independent, and
form a three dimensional mood space. A PAD mood can be
located in one of eight mood octants. A mood octant stands for
a discrete description for a mood: +P+A+D is exuberant,
–P–A–D is bored, +P+A–D is dependent, –P–A+D is
disdainful, +P–A+D is relaxed, –P+A–D is anxious, +P–A–D
is docile, and –P+A+D is hostile. Generally, a mood is
represented by a point in the PDA space.

For mood computation, it is essential to define a Virtual
Human’s default mood. A mapping, empirically derived by
Mehrabian [20], defines a relationship between the big five
personality traits and the PAD space. Using this mapping and
Mehrabian’s weighted coefficients, the computational model of
affect, is thereby able to compute a default mood:

Pleasure := 0.21•Extraversion+ 0.59•Agreeableness +

0.19•Neuroticism
Arousal := 0.15•Openness + 0.30•Agreeableness –

0.57•Neuroticism
Dominance := 0.25•Openness + 0.17•Conscientiousness+

0.60•Extraversion– 0.32•Agreeableness

We define the mood strength by its distance to the PAD zero
point. The maximum distance is √3. This is divided into 3
equidistant sections that describe three discrete mood
intensities: slightly, moderate, and fully.

Fig. 4. ALMA AffectMonitor visualizes ongoing mood changes and elicited
active emotions.

Using the above mentioned mapping and the mood strength

definition a person, whose personality is defined by the
following big five personality traits: openness=0.4,

The International Journal of Virtual Reality, 2007, 6(4):43-54

46

conscientiousness=0.8, extraversion=0.6, agreeableness=0.3,
and neuroticism=0.4 has the default mood slightly relaxed
(pleasure=0.38, arousal=-0.08, dominance=0.50).

An AffectMonitor, shown in Fig. 4, is used to visualize a
Virtual Human’s current mood and mood changing emotions.

The left side of the AffectMonitor shows a Virtual Human’s
emotions and their intensities. Newly elicited emotions are
marked dark gray (red). The right side shows a 3 dimensional
PDA mood cube displaying the current mood (the highlighted
octant stands for the discrete mood description, whereas the
light gray (yellow) ball reflects the actual mood) and all active
emotions (dark gray (red) balls). Below, the affective state,
including the current dominant emotion, and the default as well
as the current mood, is displayed.

A novelty of the actual version of ALMA is that the current
mood influences the intensity of active emotions. The theory is
that the current mood is related to personality values that
interfere with a Virtual Human’s actual personality values.
Technically, this is realized by the reverse use of the (above
shown) mapping of big-five personality values on PAD values.
Based on the current mood, the most intense related personality
trait is identified. The actual value of this trait blends over the
Virtual Human’s original personality trait value and is used to
regulate the intensity of emotions. This increases, for example,
the intensity bias of joy and decreases the intensity bias of
distress, when a Virtual Human is in an exuberant mood.

2.3. Mood Changes

According to Morris [11] conditions for mood changes can be
divided into (a) the onset of a mildly positive or negative event,
(b) the offset of an emotion-inducing event, (c) the recollection
or imagining of an emotional experience, and (d) the inhibition
of an emotional responding in the presence of an
emotion-inducing event. To keep the modeling of mood
changes as lean as possible, we take elicited emotions as the
mood changing factor. In order to realize this, emotions must be
somehow related to a Virtual Human’s mood. While using the
PAD space for modeling mood, it is obvious to put emotions in
relation to the PDA space too.

We rely on Mehrabian’s mapping of emotions into the PAD
space [19]. However, not all 24 emotion types provided by the
EmotionEngine are covered by this mapping. For those that
lack a mapping, we provide the missing pleasure, arousal, and
dominance values by exploiting similarities to comparable
emotion types [9].

Our approach to the human-like simulation of mood changes
relies on a functional approach. We concentrate on how the
intensity of emotions influences the change of the current mood
and we consider the aspect that a person’s mood gets the more
intense the more experiences the person makes that support this
mood. For example, if a person’s mood can be described as
slightly anxious and several events let the person experience
the emotion fear, the person’s mood might change to moderate
or fully anxious.

The computation of mood changes is based on active
emotions generated by the computational model of emotions.
Each appraisal of an action, event or object elicits an active
emotion that once generated, decays over a short amount of
time (i.e. one minute). All active emotions are input to the

mood change function. The function has two scopes. Based on
all currently active emotions the function defines whether the
current mood is intensified or changed. It will be intensified if
all active emotions are mapped into the mood octant of the
current mood. This is called the mood push phase. In the mood
pull phase, a mood will be changed progressively if all active
emotions are mapped into a different mood octant than the
current mood. Based on all active emotions a mood transition
vector (MTV) is computed. The MTV will in subject to the
location of the actual mood be applied in different ways to
change the mood position in the PAD space. Fig. 5 gives an
overview about the four different scenarios. The light gray
(yellow) ball represents a Virtual Humans current mood. The
dark gray (red) ball stands for an active emotion or the center of
all active emotions. Note that the mood change computation is a
dynamic process. Ever since an active emotion’s intensity
decays, the MTV is recalculated.

Fig. 5. Mood change scenarios. See Color Plate 9.

Another aspect of our mood simulation is that the current
mood has a tendency to slowly move back to the default mood.
Generally, the return time depends on how far the current mood
is away from the default mood. We take the longest distance of
a mood octant (√3) for defining the mood return time. Currently
this is 20 minutes.

2.4. Appraisal based Affect Computation

In our cognitive inspired affect computation, the first step is to
appraise relevant input by using a Virtual Human’s own
subjective appraisal rules, introduced in [17]. Input for affect
processing has to be represented as structures of our XML
based affect modeling language AffectML; introduced in [9].
Three types of affect input are distinguished: 1) basic appraisal
tags, 2) act appraisal tags, and 3) affect display appraisal tags.

All appraisal tags are defined in a Virtual Human character’s
ontology. A Virtual Human’s Conversational Dialog Engine
(CDE) uses appraisal tags to appraise the current situation

The International Journal of Virtual Reality, 2007, 6(4):43-54

47

including its own actions and those of other Virtual Humans
and users.

Basic appraisal tags express how a speaking character
appraises the event, action or object about which it talks. There
are 12 basic tags for appraising events, e.g. the tag GoodEvent,
which marks an event to be good according to the subjective
view of the one which does the appraisal. The other event tags
are: BadEvent, GoodEventForBadOther, GoodEventForGood-
Other, BadEventForGoodOther, BadEventForBadOther,
GoodLikelyFutureEvent, GoodUnlikelyFutureEvent, Bad-
LikelyFutureEvent, BadUnlikelyFutureEvent, Event-
Confirmed, and EventDisconfirmed. For appraising actions,
there are 4 basic appraisal tags: GoodActSelf, BadActSelf,
GoodActOther, and BadActOther. And finally there are 2 basic
tags for appraising objects: NiceThing, and NastyThing. All
basic appraisal tags together are the basic set of a high-level
appraisal language which can be used for a subjective appraisal
of situations. These tags can be used to appraise dialog acts and
other affective signals. For each of these types the appraisal
language provides specific tags: act appraisal tags and affect
display appraisal tags. Act appraisal tags represent the
underlying communicative intent of an utterance, e.g. tease, or
congratulate. Affect display appraisal tags stand for visual cues
of an experienced emotion or mood, e.g. a blush of shame or a
character that looks nervous. By rules, which are defined
individually for each Virtual Human those tags will be mapped
on basic appraisal tags that will be further processed to emotion
eliciting conditions.

Generally, the output of the appraisal process is a set of
emotion eliciting conditions. Based on them active emotions
are generated that in turn influence a Virtual Human’s mood.
On the technical side, each Virtual Human’s CDE has its own
ALMA process, which processes affect input. The input
consists of appraisal tags, dialog act input, emotion and mood
input, information about who is speaker, addressee and listener.
The computed affect (emotions and mood) is passed back to the
working memory of the CDE and influences its cognitive
dialog simulation. Also, the affect output is passed through the
Action Encoder module to the player component which is
responsible for rendering the Virtual Human’s visual body
appearance and its speech output (see Fig. 1). All affect output
is represented in structures of AffectML

The evaluation of this computational model of affect shows
that nearly all generated affect types are plausible to humans
(see next section). Based on these results we are confident that
the affect visualization through facial expressions and
complexions, gestures, posture changes, and through different
dialog behavior realized by each Virtual Human’s CDE is
plausible too.

III. AFFECT EVALUATION

We ask people how plausible they perceive the generated
emotions and moods in order to prove that ALMA’s
computational model of affect is able to produce coherent
affect that is comparable to human affect. To eliminate most of
the side-effects that might blur the results, we decided to
evaluate the plausibility through textual dialog descriptions. If
we could show at this level that the generated affect is plausible,

the visualization of them – if done correctly – will be plausible
as well.

We check the plausibility of affect with an offline textual
questionnaire by 33 participants. They judge the plausibility of
24 emotion types and 8 different moods that can be generated
by our computational model of affect. The materials we use for
the evaluation consist of single dialog contributions, and dialog
scenes that can be defined as a set of dialog contributions. An
example of those is given by Fig. 6 and Fig. 7.
The basic assumption we made is that emotions will be elicited
by dialog contributions. For example, the dialog contribution of
Bob “Anne, it’s cool that you’re helping grand-mother in
cleaning up the garden!” elicits the emotion pride on the side of
Anne, the addressee. On the side of the speaker (Bob) the
emotion pride is elicited. Therefore, they have to be enriched by
appraisal tags, which stand for the intentional content (see
section Appraisal based Affect Computation). These appraisal
tags are used by ALMA for generating emotions. They are not
shown in the evaluation questionnaire. Taking the example
above, in which Bob encourages Anne for her exam, the
enriched version of the dialog contribution looks like:

Bob: “Anne, it’s cool that you’re helping grand-mother in
cleaning up the garden!” [PraiseAction Anne].

Bob: Anne, it’s cool that you’re helping grand-mother in cleaning up
the garden!

Anne’s emotion: pride Bob’s emotion: admiration

Fig. 6. Dialog contributions for emotions.

Situation: Mark is reorganizing his computer hard drive by letting
Microsoft Windows removing unneeded files. Tanja just shows up.

Mark: Crap, Windows has killed all pictures of our last summer
holiday at Mallorca.
Tanja: Don’t panic, you’ll find them surely in the waste bin.
Mark: Are you sure? But what if not, what I’m doing then – they will
be lost forever!
Tanja: Well, I’ve no clue, I’m not the computer expert.
(Mark tries to recover the files by restoring them of the waste bin)
Mark: No, damn it! All the pictures gone – and there’s no way to get
them back!
Tanja: Oh no, All our pictures are lost! You are a clean up maniac. I
always told you that this will led some days to something bad. Well,
and that’s just happened. Wonderful!
Mark: Get of my back!

Marks mood after: hostile

Fig. 7. Dialog scenes for moods.

Appraisal tags, like this act tag are used as input for ALMA.
As described above, each character has a set of appraisal rules
(about 30-50), which appraise the act tag by taking into account
the role of the individual. The act tag [PraiseAction Anne] is
appraised by Bob as GoodActOther, a praiseworthy action of
one other, whereas Anne appraises the act tag as GoodActSelf,
a praiseworthy action of herself that Bob has put into her mind
by saying the above line. Following the OCC emotion theory a
praiseworthy action of one other will elicit the emotion

The International Journal of Virtual Reality, 2007, 6(4):43-54

48

admiration (Bob) and a praiseworthy action of oneself will
elicit the emotion pride (Anne).

According to Morris’ theory (see section Mood Change),
which is implemented by ALMA, emotions influence the
current mood. The emotions that are elicited by a set of dialog
contributions in a specific time interval can change the current
mood of an individual to another mood. For the questionnaire,
we use short (mostly singular) dialog contributions for the
elicitation of emotions and dialog scenes for the change of
moods. For the plausibility check of the 24 emotion types, we
rely on 24 short dialog contributions that influence, the
speaker’s and the addressee’s emotions, see Fig. 6 and Fig. 7.

Therefore, on average, each emotion is rated 2 times. For the
plausibility check of the 8 mood types, we rely on 24 dialog
scenes. Thus, every mood type is rated 3 times. In a pre
evaluation, experts (a computer linguist, a dialog expert, and a
psychologist) have reviewed the dialog contributions and the
dialog situations for being realistic. All problematic
formulations, unrealistic contributions, and unclear situations
have been rewritten and modified. In a next step, the annotated
appraisal tags that represent the intentional content are
reviewed for being appropriate. All inappropriate tags have
been identified and changed.

Participants are asked to evaluate in about half an hour how
plausible emotions and moods are through a discrete 5 point
ranking scale. 1 denotes the “lowest plausibility“, 5 stands for
the “highest plausibility“, and 3 marks the “neutral
plausibility”.

Since rating scales can be treated as interval scales [21], we
used parametrical tests for the statistical analysis. The t-test for
one sample is a statistical significance test that proves whether
a measured mean value of an observed group differs from an
expected value. In our study, ratings were proven to be
“positive” if the mean score significantly exceeded the
moderate plausible value of 3.

To test the effect of a factor with multiple values (e.g.
emotion type) or interactive effects of several factors (e.g.
affect type and gender) we calculated an analysis of variance
(ANOVA).

The overall result of the evaluation is that emotions and
moods generated by ALMA are plausible. 22 out of 24
emotions and of 7 out of 8 moods are rated positive plausible.
Considering all participants, the results are independent from
age or gender. The full information about the evaluation can be
found in [22].

Based on these results, we were more confident about that
the embodiment of ALMA generated emotions and moods
through Virtual Humans will be plausible as well. This,
however, has to be evaluated separately.

The next section explains by example how emotions and
mood are computed and displayed in behavior during a dialog
between a user and three Virtual Humans.

IV. DISPLAY OF AFFECT

A dialog transcript between a user and three Virtual Humans
is used to illustrate the generation of emotions and their surface
rendering in behavior. The dialog is about that a user should
anticipate if a soccer player scores a goal or not while viewing a

soccer video. The video stops at a dramatic scene, see Fig. 9. A
user can ask virtual experts what they think about the situation.
Basically it contains of the same dialog lines which can be
found in chapter “Multiparty Conversation for Mixed Reality”
on pp. 3 but features relevant input for the affect generation and
shows affective behavior examples.

A major goal of the VirtualHuman project is to simulate
realistic affective behavior of Virtual Human’s. At first, affect
influence the mind of the characters, which is realized by CDE
dialog strategies. There emotions and moods bias the selection
of dialog strategies, turn taking behavior and wording of
utterances. See chapter “Multiparty Conversation for Mixed
Reality” for more details. For the body layer emotions are used
to control a) facial expressions, b) facial complexions, like red
cheeks, c) affective animations, like weeping (see fig. 8).
Moods are used to control a) posture and b) idle behavior of
Virtual Human’s, such like the eye blink rate, the simulation of
breath, and specific idle gestures (e.g. look at watch). A
character’s mood in VirtualHuman is mainly reflected by
postures. According to the 8 different moods which can be
simulated by ALMA, each Virtual Human has 8 different
mood-related posture animations. For example, exuberant
Virtual Humans show more body and head movements than
bored ones.

Fig. 8. Example of affective body behavior by e.g. real-time affective weeping
animation (caused by emotion pity). See Color Plate 10.

The following example dialog highlights the synchronisation

between ALMA and CDE processes of each Virtual Human.
During the interaction between users and Virtual Humans,
emotions are elicited by dialog moves (of one of the users or
other Virtual Humans). The correlated appraisal process is
described verbally and annotated in a bracketed section ([…])
below a dialog turn. Emotions and mood display in behaviour
are shown in various screenshots.

(1) MODERATOR: ... Now look closely [shows video on
screen]. What will happen next? The alternatives are One --
Ballack scores the goal, Two -- the keeper does a parade, Three
-- Ballack kicks the ball into the sky.
(2) MODERATOR: What do you think, Mister Kaiser?

The International Journal of Virtual Reality, 2007, 6(4):43-54

49

(3) Mr. KAISER: I think Ballack scores the goal.
[His CDE appraises the moderator’s choice to consult him and
his competent answer as a good action of himself (appraisal
tag GoodActSelf), because he’s pretty sure what is going to
happen in this situation. This elicits the emotion pride, which is
not visualized on the body layer]
(4) MODERATOR: Spoken like a real football trainer.
(5) MODERATOR: Now, player one, what is your guess?
(6) USER: Mrs. Herzog, what do you think?
(7) Mrs. HERZOG: I think the keeper does a parade.
[She is doubtful about her estimation. Her CDE appraises this
as a bad action of herself (appraisal tag BadActSelf). This
elicits the emotion shame, which lets her blush, see Fig. 9]

Fig. 9. Example of an affective facial complexions: red cheeks as a result of the
emotion shame. See Color Plate 11.

Fig. 10. Example of an affective facial expression combined with complexion:
distorted lips and red head triggered by the emotion reproach/anger. See Color

Plate 12.

(8) MODERATOR: An interesting opinion.
(9) MODERATOR: Now it's your decision, player one.
(10) USER: I think Mr. Kaiser is right.

[The CDE of Mr. Kaiser appraises this dialog move as a
GoodActSelf, because the user trusts him in his opinion. This

elicits again the emotion pride, which is not visualized on the
body layer]
 (11) Mrs. HERZOG: How can you believe this amateur!
[Her CDE appraises this as a BadActOther and a few seconds
later as a BadEvent. The latter, because she realizes that her
opinion about the outcome has been mistrusted in front of all!
This elicits the emotion reproach and later the emotion distress,
which results in the complex emotion anger, see Fig. 10]
 (12) Mr. KAISER: [smiles]
[He appraises Mrs. Herzog’s display of reproach/anger
emotion as a GoodEvent (emotion joy), which lets him smile.
Due to the fact that Mr. Kaiser has experienced many positive
emotions his mood has changed from relaxed to exuberant.
When being exuberant, he shows more active idle behavior,
compared to, when he’s being in a relaxed, see Fig. 11]

Fig. 11. Example of mood display in posture

(13) MODERATOR: Alright, answer one.

V. PLAYER MARKUP LANGUAGE

The Player Markup Language (PML) serves as an interface
language between the CDEs, ALMA, the Action Encoder and
the 3D player. It was designed to meet the following
requirements:

• Support combination of both high-level abstract concepts

and detailed, application-specific information.
• Stepwise refinement of character and object actions to

minimize dependencies between components.
• Timing and synchronization support for multimedia

content.

As a representation and interface language PML must be able
to specify the properties and the behaviors of characters and
objects in a 3D virtual environment independently from their
realization in a concrete setting. Gestures, for example, are
selected and parameterized by the CDEs based on their
communicative function discounting at first their realization by
the 3D player (e.g. using either key-frame animations, inverse

The International Journal of Virtual Reality, 2007, 6(4):43-54

50

kinematics or some other animation technique). At a later stage
however this detailed player- and character-specific
information has to be provided, e.g. by specifying the
animation type along with the required animation parameters
and exact timing information. The stepwise refinement of
character and object actions is therefore another important
requirement. PML supports the incremental specification of
synchronized multimodal output (e.g. postures, gestures, facial
animations, speech) using both qualitative and quantitative
temporal constraints. In a first step actions are synchronized by
specifying temporal relations (e.g. before, overlaps, during). In
a second step these qualitative constraints are resolved by the
Action Encoder which computes the start time and active
duration for each action (see section Ⅵ).

PML focuses on the specification of verbal and non-verbal
behaviors of virtual characters in multi-party dialogs but it also
contains elements to specify and coordinate the presentation of
other scene elements over time. In VirtualHuman the term
scene element covers a broad range, including discrete media
types such as still images, graphical user interface elements (e.g.
menus and sliders), as well as continuous media types that are
intrinsically time-based, such as video, audio and object
animations.

Fig. 12. PML character definition.

To specify the properties and the behavior of scene elements,
PML distinguishes between three types of documents: PML
definitions, PML actions, and PML messages. The focus in the
following subsections is on the language specification. The
way how these elements are processed by the Action Encoder is
discussed in section 6. PML is an XML-based language. The
XML schema can be downloaded from the VirtualHuman
website2.

2 http://www.virtual-human.org/xsd/PML.xsd

5.1 PML Definitions

PML definitions are used to specify the properties of objects
and characters in a 3D virtual environment. We will use the
term scene element introduced in the previous paragraph to
refer to any element that can be defined in such a document.
There are three types of definitions: repository definitions,
character definitions, and object definitions. Repository
definitions are comparable to classpaths definitions in a
programming language like Java. They tell the 3D player where
the resources for the various scene elements (images, audio and
video files, etc.) are to be found on the local platform.
Character definitions specify the acoustic parameters of the
synthetic voice (pitch baseline, pitch range, speech rate, and
volume), the available animations, their default durations, and
the phoneme-viseme mapping to be used. They also specify the
set of available complexions (skin textures) and targets in the
3D environment for the procedural animations (e.g. deictic
gestures, eye and head movements).

Fig. 12 shows an example of a character definition. Each
scene element has a unique identifier (‘id’) by which it can be
referenced (via the ‘refId’ attribute) in other elements. The
voice definition is followed by the phoneme-viseme mapping
and a list of complexions. What follows is the set of available
animations. PML distinguishes between animations that
specify a movement through a sequence of multiple poses (e.g.
using key frames) and animations that define a single pose (e.g.
using morph targets). This distinction is reflected in the
<multiPoses> and <singlePose> element definitions. A third
type (<implicitPose>) is used to specify procedural animations.
These are the basic building blocks for a character’s behavior.
New behaviors (e.g. facial expressions and idle behaviors) can
be defined as a combination of these action primitives. In the
PML definitions example the idle behavior ‘idle1’ is defined
using two animations. If this idle behavior is started the player
will repeatedly and randomly choose one of the animations. It
is also possible to define new facial expressions as a
combination of single poses as shown in Fig. 13.

<definitions id="cde::000">
 <repository id="rep1">
 <path src="file:///local/vh/characters/Herzog"/>
 </repository>
 <character id="Herzog" src="rep://rep1/main.wrl">
 <voice id="voiceHerzog" refId="femaleVoice1" pitch="high"
 range="default" rate="x-slow" volume="loud"/>
 <viseme>
 <phoneme id="aa" refId="viseme:A" intensity="0.8"/>
 <phoneme id="ao" refId="viseme:O" intensity="1.0"/>
 ...
 </viseme>
 <complexion id="redCheeks" refId="face"
 src="rep://rep1/textures/redCheeks.jpg"/>
 <complexion id="tears" refId="face"
 src="rep://rep1/textures/tearsmap.mtd"/>
 <multiPoses id="fold" src="rep://rep1/fold.wrl" dur="6166"/>
 <multiPoses id="nod" src="rep://rep1/nod.wrl" dur="933"/>
 ...
 <singlePose id="joy" src="rep://rep1/joy.wrl" dur="2000"/>
 <singlePose id=" viseme:A" src="rep://rep1/visA.wrl" dur="2000"/>
 ...
 <idlePoses id="idle1" random="true">
 <multiPoses refId="idle_var1" dur="7333"/>
 <multiPoses refId="idle_var2" dur="13100"/>
 </idlePoses>
</character>

<createSinglePose id="angry">
 <singlePose refId="L_Eyebrow_Down" intensity="0.7"/>
 <singlePose refId="R_Eyebrow_Down" intensity="0.7"/>
 <singlePose refId="L_Mouthcorner_Down" intensity="0.4"/>
 <singlePose refId="R_Mouthcorner_Down" intensity="0.4"/>
 <singlePose refId="Neutral" intensity="-1.2"/>
</createSinglePose>

Fig. 13. PML facial expression definition.

Object definitions are used to specify graphical user
interface elements (e.g. on-screen menus), virtual cameras, and
to define the various media types that will be used in the
scenario. For images and videos it must be specified where in
the 3D scene they should be displayed. This is done via a
reference to an object that plays the role of the canvas.
Similarly for audio files an object must be specified that acts as
the sound source.

All scene elements used in PML actions must first be defined
in a PML definitions document. Scene elements that are no

The International Journal of Virtual Reality, 2007, 6(4):43-54

51

longer required (e.g. videos and audio files that have been
played) can be deleted from the list of definitions using the
<undefine> element that releases the system resources that
have been allocated by the 3D player.

5.2 PML Actions

PML actions are used to specify the appearance and behavior
of all characters and objects in a 3D environment. Some actions
can be applied to both characters and objects while others are
only available for specific scene elements. ‘Show’ and ‘hide’
are universal actions as well as ‘transform’ which is used to
change the location and orientation of an object or character.
Idle lists for both element types (for an object this might be
some background animations) can be started and stopped or
replaced by other idle lists, e.g. to display a character’s mood
change as described in section “Affect Rendering”. Actions
that are only applicable to virtual characters are ‘speak’ for
verbal output, facial animations, gestures, postures, and
complexions. Examples for PML character actions are given
the following sections. Object actions comprise the starting and
stopping of audio and video, the parameterization and
manipulation of graphical user interface elements, and the
control of the virtual cameras. Fig. 14 gives an example of a
PML object action that starts a video and an audio comment.

Fig. 14. PML object action.

PML uses an object-oriented approach, i.e. each action is
associated with a single character or object. Actions are
synchronized by defining a temporal alignment with another
action using qualitative temporal constrains as described in
section “Timing and Synchronization”.

5.3 PML Messages

PML messages are used to control the execution of actions,
and to exchange information between the 3D player and other
system modules. There are three different types of messages:
commands, states, and facts. Commands can be used to start
and stop the execution of the set of actions in a PML actions
document. States are used by the 3D player to inform other
modules about the execution state (e.g. started, failed, finished)
of PML actions. This information is crucial to synchronize the
behavior of characters and objects across different sets of
actions. The exact timing and synchronization of actions is
defined within a PML actions document that contains, for
example, a character’s verbal and nonverbal behavior for a
single utterance. When all actions have been performed by the
character, the player sends a ‘finished’ message to signal that it
is ready to execute the next set of actions. Facts are used to

inform the CDEs about user actions (e.g. the user has selected a
menu entry) as shown in the following example (see Fig. 15).

Facts are represented by attribute-value pairs. In this example
‘playerList’ refers to a multiple-choice menu that has been
previously defined and displayed in the 3D virtual environment
using PML definitions and actions. The item selected by the
user has the value ‘Klose’ associated with it. This information
is used by the CDEs in their dialog planning process.

<message id="player::321">
 <fact refId="playerList" value="Klose"/>
</message>

Fig. 15. PML message document.

5.4 PML Processing

The structure of PML definitions, actions, and messages is
defined in a XML schema. In addition, a protocol is established
that specifies how these three document types are processed
within the system. The protocol consists of a number rules such
as: If the 3D player receives a definitions or actions document,
it registers all scene elements, allocates the required resources
and sends a PML message with the state ‘fetched’. Only PML
actions need to be started explicitly. This can be done via the
‘start’ attribute in the document itself (see Fig. 15) or by
sending a PML message with the ‘start’ command. The 3D
player uses the states ‘started’, ‘failed’ and ‘finished’ to signal
that it has started executing the set of actions, that some error
occurred while trying to execute them, and that all actions have
been successfully terminated. PML definitions and messages
on the other hand do not have to be started explicitly but are
executed immediately.

<actions id="cde::122" start="true">
 <object refId="Studio">
 <startVideo id="a1" refId="soccer-em04" alignTo="null"
 alignType="null"/>
 <pause id="a2" dur="3000" alignTo="a1"
 alignType="finishes"/>
 <startAudio id="a3" refId="comment-goal"
 alignTo="a2" alignType="meets"/>
 </object>
</actions> 5.5 Other Multimodal Markup Languages

In the last two decades a number of multimodal markup
languages have been developed to specify the behavior of
virtual characters and multimedia objects in 2D or 3D
environments. Some of them have been designed with a human
author in mind, while others are capable of representing expert
knowledge by providing deep information structures created by
dedicated modules (e.g. a natural language generator) at
runtime. The Virtual Human Markup Language3 (VHML) and
the Multimodal Presentation Markup Language4 (MPML) have
been designed to specify the behavior of virtual characters in
multimedia applications. While these two markup languages
support a rather broad range of concepts, other languages
address more specific issues. In [23] several scripting
languages for life-like characters are described, like, for
example, the Affective Presentation Markup Language (APML)
that focuses on the affective aspects of the communication.

PML differs from these languages mainly in the strict
separation of object and character definitions and actions, and
in the way PML messages are used to synchronize modules and
to inform them about system and user actions. PML definitions
play an important role, since they encapsulate the knowledge
about scene elements and how they can be manipulated by the

3 http://www.vhml.org/
4 http://www.miv.t.u-tokyo.ac.jp/MPML/en/

The International Journal of Virtual Reality, 2007, 6(4):43-54

52

behavior generation components. Besides they are used by the
3D player to locate and allocate the resources associated with a
character or object action. PML is based on the Rich
Representation Language (RRL) developed in the NECA
project [25]. Both languages focus on the specification of
verbal and non-verbal behaviors of characters in multi-party
dialogs and on a system-internal use rather than providing a
human editable form. The RRL however does not support other
media types (images, videos, graphical user interface elements,
etc.) which made it unsuitable for the VirtualHuman scenarios.

VI. ACTION ENCODER

The Action Encoder decouples the action planning on an
abstract symbolic level from the character- and player-specific
rendering of these actions. It serves as post processing
component for the CDEs and ALMA. It is responsible for the
action encoding, i.e. the refinement of character and object
actions, for the timing and synchronization of these actions, and
for generating the nonverbal behavior associated with a
character’s affective state.

6.1 Action Encoding

Fig. 16. PML actions before Action Encoder processing.

The CDEs specify the behavior of characters and objects in
the scenario by generating PML actions for verbal utterances,
accompanying gestures, multimedia objects and graphical user
interface elements. Available gestures are defined in a so-called
gesticon. We use this term analogous to lexicon for a repository
of gesture specifications. Gesticon entries describe gestures in
terms of their physical form, meaning, and communicative
function. In addition, information about character- and
player-specific animations associated with this gesture is
provided. Our gesticon has 158 entries (102 multiPoses, 45
singlePose, and 11 implicitPose elements). Each character has
about 90 animations and 20 facial expressions (including
visemes). PML actions generated by the CDEs comprise the
symbolic name of the gesture (e.g. “finger ring”) and possibly
additional parameters (e.g. speed and hand(s) to be used). For
each gesture specification an appropriate animation is selected
and added to the <animate> element based on the information
provided in the gesticon and the PML character and object
definitions. The textual output specified by the CDEs is
processed as follows: A pronunciation mapping is applied to
each word in order to deal with unknown or difficult to
pronounce words. Then a text-to-speech (TTS) system is used
to generate the audio files and to obtain information about the
phoneme types and their duration. This information is inserted

in the PML actions document and later used by the player to
select character-specific animations (visemes) for the
lip-synchronous mouth movements. Fig. 16 gives an example
of a PML actions document before it has been processed by the
Action Encoder.

The character should say ‘Hallo’ accompanied by an eye
gaze which finishes with the end of the utterance. Fig. 17 shows
the same document after is has been processed by the Action
Encoder. The <speak> element contains now the URL of the
generated audio file and the list of phonemes and their duration
obtained from the TTS. The eye gaze is realized by a procedural
animation with the target ‘Moderator’. The timing and
synchronization of the two actions is discussed in the next
section.

<actions id="cde::117" start="true">
 <character refId="Herzog">
 <speak id="s1" alignTo="null" alignType="null">
 <text>Hallo.</text>
 <audio src="http://vh-demo/tts_files/s1.wav">
 <phoneme refId="h" dur="74"/>
 <phoneme refId="aa" dur="46"/>
 <phoneme refId="l" dur="47"/>
 <phoneme refId="ow" dur="195"/>
 </audio>
 </speak>
 <animate id="a1" alignTo="s1" alignType="finished-by">
 <gesture refId="gazeAtModerator"/>
 <implicitPose refId="lookAtHold" target="Moderator"/>
 </animate>
 </character>
 <schedule>
 <par>
 <action refId="s1" begin="638" dur="362"/>
 <action refId="a1" begin="0" dur="1000"/>
 </par>
 </schedule>
</actions>

<actions id="cde::117" start="true">
 <character refId="Herzog">
 <speak id="s1" alignTo="null" alignType="null">
 <text>Hallo.</text>
 </speak>
 <animate id="a1" alignTo="s1" alignType="finishes">
 <gesture refId="gazeAtModerator"/>
 </animate>
 </character>
 </actions>

Fig. 17. PML actions after Action Encoder processing.

6.2 Timing and Synchronization

Fig. 18. Temporal constraints between two actions.

The Conversational Dialog Engines have no information
about the exact duration of the specified actions since the
corresponding animations and audio files have not yet been

The International Journal of Virtual Reality, 2007, 6(4):43-54

53

selected or generated. Therefore, only qualitative constraints
have been used to synchronize these actions.

The simple duration defines the default duration of an action.
For some actions the simple duration can be modified by
specifying the speed with which it should be performed. The
simple duration and the speed are combined to define the active
duration. The start time and the active duration define the time
interval during which the action will be executed in the 3D
player. The set of temporal constraints depicted in Fig. 18
covers all possible relations between two time intervals.

After all character and object actions have been processed by
the Action Encoder, the active duration of these actions has
been determined. The temporal constraints between the actions
in a PML document are then mapped to a set of linear
inequalities. This allows us to use a standard constraint solver
to find a solution to this constraint problem. If no solution is
found, an error is generated that forces the CDEs to change the
temporal alignment of the actions or to omit one or more
actions. Otherwise the start times for all actions are computed
and the exact timing and synchronization is specified in the
<schedule> element of the PML actions document using a
SMIL (Synchronized Multimedia Integration Language)
compliant syntax (see http://www.w3.org/AudioVideo/).

6.3 Affect Rendering

The Action Encoder is also responsible for the nonverbal
behavior associated with a character’s affective state. It
receives the affect output produced by the affect module and
produces PML character actions that control a character's facial
expression, complexion, and idle behavior. A character's
dominant emotion and its intensity are used to select an
appropriate facial animation and to instruct the player to change
a character’s complexion by smoothly interpolating between
different skin textures. The current mood is expressed through
the character's idle behavior. The idle behavior for each mood
is a set of animations that are performed in between and
sometimes in addition to the gestures specified by the CDEs.
The mapping between emotions and moods on the one hand
and a character’s behavior on the other hand is defined by affect
display rules as illustrated by the following examples:

R1: gratification → face=joy*0.8 AND complexion=redCheeks
R2: bored → bored, boredPreparation, boredRetract
…

If the left hand side is an emotion type, the right hand side
contains a list of facial expressions (optionally with a factor that
is combined with the emotion intensity to obtain the intensity of
the resulting expression) and a complexion. If the left hand side
is a mood type, then the right hand side contains the name of the
new idle behavior and optionally the corresponding animations
that initiate or reverse the posture shift with respect to the
character’s default posture. If a character’s dominant emotion
is ‘gratification’ with intensity 0.4 and the mood changes from
relaxed to bored, the Action Encoder generates the respective
PML actions (see Fig. 19).

The information about the dominant emotion and the current
mood can also be used to modify the animation parameters, e.g.,
to increase or decrease the speed of conversational gestures and
the frequency of the eye blinking idle behavior.

VII. SUMMARY

In this paper we presented an overview to the affective
behavior modeling of VirtualHuman characters. Based on an
empirically evaluated model of affect various behavior
modalities of VirtualHuman characters are controlled. These
can be divided in affective and conversational behaviors.
Affective non-verbal behavior is realized by facial expressions,
and complexions, as well as affective animations, and mood
dependent idle-behaviors reflecting mood specific posture
changes and idle gestures. The interaction style of each
VirtualHuman character is also influenced by affect. According
to the affective state, which is represented by active emotions
and mood, dialog strategies are selected. On the surface level,
the wording and the phrasing also reflects the current affective
state of a VirtualHuman character.

<actions id="ae::234" start="true">
 <character refId="Herzog">
 <animate id="a1" alignTo="null" alignType="null">
 <face refId="Gratification" intensity="0.32"/>
 <singlePose refId="joy" intensity="0.32"/>
 </animate>
 <complexion id="a2" alignTo="null" alignType="null"
 refId="redCheeks" intensity="0.4" dur="10000"/>
 <stopIdleList id="a3" refId="Relaxed" alignTo="null"
 alignType="null"/>
 <animate id="a4" alignTo="a3" alignType="after">
 <posture refId="RelaxedRetract"/>
 <multiPoses refId="idle_relaxed_stop"/>
 </animate>
 <animate id="a5" alignTo="a4" alignType="after">
 <posture refId="BoredPreparation"/>
 <multiPoses refId="idle_bored_start"/>
 </animate>
 <startIdleList id="a6" refId="Bored" alignTo="a5"
 alignType="after"/>
 </character>
 <schedule>
 <par>
 <action refId="a3" begin="0" dur="0"/>
 <action refId="a2" begin="0" dur="10000"/>
 <action refId="a1" begin="0" dur="2000"/>
 <action refId="a4" begin="1" dur="1900"/>
 <action refId="a5" begin="1902" dur="2600"/>
 <action refId="a6" begin="4503" dur="0"/>
 </par>
 </schedule>
</actions>

Fig. 19. PML actions for affect display.

 On the technical side this is realized by a new approach that
allows direct affective behavior commands for the rendering of
virtual characters. We presented the Player Markup Language
that supports the incremental specification of the affective
multimodal behavior of the virtual characters using both
qualitative and quantitative temporal constraints. We
developed an Action Encoder module that decouples the action
planning on an abstract symbolic level from the character- and
player-specific rendering of these actions. The Action Encoder
is also responsible for generating the nonverbal behavior
associated with a character’s affective state by mapping the
Affect Module’s output to PML actions using a set of affect

The International Journal of Virtual Reality, 2007, 6(4):43-54

54

display rules. The parallel processing of conversational and
affective behaviors in our modular architecture using a broad
set of different modalities enhances the expressivity and
produces a believable human-like interaction behavior of our
virtual characters.

ACKNOWLEDGMENT

We gladly acknowledge the valuable contributions to the
PML specifications of our colleagues Yvonne Jung and
Alexander Rettig at the Fraunhofer IGD in Darmstadt and our
colleague Gernot Gebhard at DFKI.

The present work of the VirtualHuman project is funded by
the German Ministry for Education and Research under grants
01 IMB 01A.

REFERENCES
[1] J. Gratch and S. Marsella. Modeling Emotions in the Mission Rehearsal

Exercise, in Proceedings of the 10th Conference on Computer Generated
Forces and Behavioral Representation, pp. 457-466, 2001.

[2] D. R. Traum and J. Rickel. Embodied Agents for Multi-party Dialogue in
Immersive Virtual Worlds, in: Proc. of the First International Joint
conference on Autonomous Agents and Multiagent systems, pp. 766-773,
2002.

[3] J. Lester, J. L. Voerman, S. G. Towns and C. B. Callaway. Cosmo: A
Life-like Animated Pedagogical Agent with Deictic Believability, in:
Proc. of the IJCAI97 Workshop on Animated Interface Agents: Making
them Intelligent, Nagoya, 1997.

[4] J. Gratch. Émile: Marshalling Passions in Training and Education, in:
Proc. of Autonomous Agents ‘00, pp. 325-332, 2000.

[5] G. Ball and J. Breese. Emotion and Personality in a Conversational Agent,
in [24], pp. 189-219, 2001.

[6] B. de Carolis, C. Pelachaud, I. Poggi and M. Steedman. APML, a Markup
Language for Believable Behavior Generation, in [23], pp. 65-85.

[7] H. Prendinger, S. Saeyor and M. Ishizuka. MPML and SCREAM:
Scripting the Bodies and Minds of Life-Like Characters, in [23], pp.
213–242.

[8] M. Löckelt. Action Planning for Virtual Human Performances, in:
Proceedings of the International Conference on Virtual Storytelling 2005,
Strasbourg, France, 2005.

[9] P. Gebhard. ALMA-A Layered Model of Affect, in: Proceedings of the
Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 29-36, 2005.

[10] R. Krause , Affekt, Emotion, Gefühl, in: W. Merten and B. Wandvogel
Handbuch psychoanalytischer Grundbegriffe, Kohlhammer, pp. 73-80,
2000.

[11] W. N. Morris. Mood: The Frame of Mind, New York: Springer-Verlag,
1989.

[12] R. J. Davidson. On Emotion, Mood and Related Affective Constructs, in:
P. Ekman & R. J. Davidson (Eds.) the Nature of Emotion: Fundamental
Questions, New York: Oxford University Press, pp. 51-55, 1994.

[13] R. R. McCrae and O. P. John. An Introduction to the Five-factor Model
and Its Implications, in Journal of Personality, vol. 60, pp. 171-215, 1992.

[14] P. Becker. Structural and Relational Analyses of Emotion and Personality
Traits, in Zeitschrift für Differentielle und Diagnostische Psychologie, vol.
22, no. 3, pp. 155-172, 2001.

[15] D. Watson and L. A. Clark. On Traits and Temperament. General and
Specific Factors of Emotional Experience and Their Relations to the
Five-factor Model, in Journal of Personality, pp. 441-476, 1992.

[16] P. Gebhard, M. Kipp, M. Klesen and T. Rist. Adding the Emotional
Dimension to Scripting Character Dialogues, in: Proc. of the 4th
International Working Conference on Intelligent Virtual Agents, pp.
48-56, 2003.

[17] P. Gebhard, M. Klesen and T. Rist. Coloring Multi-Character
Conversations through the Expression of Emotions, in: Proc. of the
Tutorial and Research Workshop on Affective Dialogue Systems, pp.
128-141, 2004.

[18] A. Ortony, G. L. Clore and A. Collins. The Cognitive Structure of
Emotions, Cambridge University Press, Cambridge, MA, 1988.

[19] A. Mehrabian. Pleasure-arousal-dominance: A General Framework for
Describing and Measuring Individual Differences in Temperament, in
Current Psychology, vol. 14, pp. 261-292, 1996.

[20] A. Mehrabian. Analysis of the Big-five Personality Factors in Terms of
the PAD Temperament Model, in Australian Journal of Psychology, vol.
48, no. 2, pp. 86-92, 1996.

[21] R. Westermann. Empirical Tests of Scale Type for Individual Ratings, in
Applied Psychological Measurement, 9, pp. 265-274, 1985.

[22] P. Gebhard and K. H. Kipp. Are Computer-Generated Emotions and
Mood Plausible to Humans? in: Proceedings of the 6th international
Conference on Intelligent Virtual Agents (IVA 2006), pp. 343-356, 2006.

[23] H. Prendinger and M. Ishizuka. Life-Like Characters-Tools, Affective
Functions and Applications, Springer, 2004.

[24] J. Cassell, J. Sullivan, S. Prevost and E. Churchill. Embodied
Conversational Agents, The MIT Press, Cambridge, Massachusetts, 2000.

[25] P. Piwek, B. Krenn, M. Schröder, M. Grice, S. Baumann and H. Pirker.
RRL: A Rich Representation Language for the Description of Agent
Behaviour in NECA, in Proceedings of the Workshop on Embodied
Conversational Agents-Let’s specify and evaluate them! 2002.

Martin Klesen was born in St. Wendel, Germany. He
studied computer science, mathematics, and cognitive
psychology at the University of Saarbrücken and the
University of Edinburgh and received his Diploma
degree in 1997.
He works as a research scientist in the Intelligent User
Interfaces department at the German Research Center for
Artificial Intelligence (DFKI) in Saarbrücken. His
research interests are intelligent virtual agents, in

particular, the role of status in social interaction, authoring tools for high-level
behavior control, and XML-based multimodal markup languages. He
participated in several in-house, national and international projects, including
PUPPET, NECA, CROSSTALK, COHIBIT, and VIRTUALHUMAN.
Martin Klesen served as a member of the program committee of the Intelligent
Virtual Agents (IVA) conferences and acted as a reviewer for several major
conferences in the field of intelligent user interfaces and embodied
conversational agents.

Patrick Gebhard was born in Heilbronn-Sontheim,
Germany. He studied computer science and physics at
the University of Saarbrücken and received his Diploma
degree in 1999.
He is working as a research scientist at the Intelligent
User Interfaces department at the German Research
Center for Artificial Intelligence (DFKI) in Saarbrücken.
His research interests are affective intelligent virtual
agents and computational models of affect based on

cognitive theories. Furthermore he is engaged in the investigation of authoring
tools for interactive story telling that use multiple virtual characters. He
participated in several in-house, national and international projects, including
PRESENCE, SAFIRA, CROSSTALK, COHIBIT, and VIRTUALHUMAN.
Patrick Gebhard served as a member of the program committee of the
Intelligent Virtual Agents (IVA) conferences and acted as a reviewer for several
major conferences in the field of intelligent user interfaces and embodied
conversational agents.

	I. INTRODUCTION
	II. AN AFFECT MODULE FOR VIRTUAL HUMANS
	2.1. Affect Taxonomy
	2.2. ALMA
	2.2.1 Emotions
	2.2.2 Moods

	2.3. Mood Changes
	2.4. Appraisal based Affect Computation
	III. AFFECT EVALUATION
	IV. DISPLAY OF AFFECT
	V. PLAYER MARKUP LANGUAGE
	5.1 PML Definitions
	5.2 PML Actions
	5.3 PML Messages
	5.4 PML Processing
	5.5 Other Multimodal Markup Languages

	VI. ACTION ENCODER
	6.1 Action Encoding
	6.2 Timing and Synchronization
	6.3 Affect Rendering

	VII. SUMMARY
	ACKNOWLEDGMENT
	REFERENCES

