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Suffix Tree
A suffix tree is a compressed trie of all suffixes of a string x$
x=abaab (x has length m-1, $ is an unique sentinel character, 

thus x$ has a length m).

1: abaab$
2: baab$
3: aab$
4: ab$
5: b$
6: $

a
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b
a a

$ $$$
$

ab
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3 45 6
Each leaf node is marked with an integer j corresponding to suffix S[j…m]
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O(m) Storage Suffix Tree
A suffix tree is a compressed trie of all suffixes of a string x$
The path labels are specified by two integers (k,l), k=start index 

or position of the path and l= end position of the path.

1: abaab$
2: baab$
3: aab$
4: ab$
5: b$
6: $

(1,1)
(2,2)

(3.6)

(2,1)

(4,6)

1
2

3 45 6

(3,6) (6,6)

(6,6)
(6,6)

Each leaf node is marked with an integer j corresponding to suffix S[j…m]
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Implicit Suffix Tree
Remove all $ . Remove all edges without any label. Remove 
all nodes with a single child and the merge the path labels 
into one label.

1: abaab$
2: baab$
3: aab$
4: ab$
5: b$
6: $

a
b a a b

b

b
a a ab
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4
5

6

2
Suffixes 4,5 and 6 appear implicitly.
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Ukkonen’s Algorithm
This an on-line algorithm. Given the 
sequence S[1,2,….m], it constructs implicit 
suffix trees Ii for the prefix S[1,2,…i] starting 
from I1 incrementing i by 1until Im is built. 
There are m phases. In phase i+1 Ii+1 is 
constructed from Ii . The (i+1) phase has 
(i+1) extensions. Extension j (1<=j<=i+1) 
deal with the sequence S[j,…(i+1)]
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High-Level Description
Construct I1
For i from 1 to m-1

(begin phase i+1)
For j from 1 to i+1

(begin extension j)
Walk down the tree from root along the path 

S[j…i] in the current implicit tree. If needed, add 
S[i+1] at the end of the path to insure S[j…i+1] is in 
the tree.

end
end
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Types of Nodes
Leaf Node: corresponds to a suffix
Explicit Node:  Internal node that has at least two 
branches
Implicit Nodes: corresponds to a suffix but due to 
path compression resulting from elimination of $, it 
only has one child and hence has been reduced to 
an implicit node.

We will use Greek symbols α, β, γ to denote strings 
and symbols x,y,z to denote single characters. Let 
β=S[j…i] be a suffix of S[1…i]

ij1 β
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Suffix Extension Rules
Rule 1: Once a leaf, always a leaf.
Rule 2: No path from end of string β in Ii starts with 
S[i+1] but the path continues. Then attach an edge 
with label S[i+1] at the end of β creating an explicit 
node if necessary.

β
S[i+1]

β
S[i+1]

(The ‘white’ tree is in Ii. White plus purple is in Ii+1)
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Extension Rule 3
Rule 3: Some path from the end of β
starts with S[i+1] so βS[i+1] is already 
in the tree. Do nothing.

ββ
S[i+1]

S[i+1]
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An example: S=axabxb
Phase i=1 (Note, in  phase i=0, the tree simply a single 

node, the root corresponding to the empty string ε)

β=ε;  Only one extension. βS[i+1]=a. 
Rule 2 is applicable and I1 is a

Phase i=2 Two extensions for suffixes ax
and x . Suffix ax is inserted using Rule 1 
and x in inserted by using Rule 2 ax

x
(Rule Sequence:12)

1

1
2
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Example (continued)
Phase i=3
Three extensions for suffixes axa, xa and a. Note, the 

first two extensions are simply copying I2 and 
adding last character S[i+1]=a to it at the leaf 
nodes by applying Rule 1. Then the last suffix is a 
single character a which is handled, in this case, by 
Rule 3 (do nothing).

aa
a xx(Rule Sequence: 113)

1
2

3
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Phase 4
Phase i=4
The four suffixes are axab,xab,ab and b
The Rule sequence (1122). Note due to 

Rule 2, two explicit nodes have been
added.

aax
a x

b

b

b b
1 3 2

4
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Phase 5
Phase i=5
The sequencesare axabx, 
xabx,abx.bx and x.
Rule Sequence 
(11113)

aax
a x

bb b

1 3 2

4b x

x x x

5

(Node 5 isimplicit)
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Phase 6
Phase i=6
The suffixes are axabxb,xabxb,abxb,
bxb,xb and b

The Rule
Sequence: (111123)

a
a bb

b b
bb

b
b

b x

xx
xx

x

1 3 5

a

2

4
6
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Properties of Rule Sequence
A very important property of the Rule sequence is 
that it consists of an initial sequence of 1’s (except 
for phase 1 which has one Rule 2) followed by 
possibly a sequence of 2’s and if a 3 occurs at the 
end, further application of Rule 3 can be 
abandoned.
Another property is that the length of the  Rule 1 
sequence in phase i+1 is equal or strictly one more 
than the length of Rule 1 sequence in phase i.

(Justify the above statements)
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The Naïve Algorithm
In the naïve algorithm that follows from the ‘High Level 
Description’, once we locate the end of the string β in the current 
tree Ii , inserting S[i+1] after it, takes constant amount of work. 
The crux of the problem is to find out where β ends in the current 
tree. For this, we engaged in walking down the tree matching 
characters taking O(|β|) time for |β|=i,i-1,….,2,1 for the (i+1) 
phase.    
So, Ii+1 is created  from Ii making O(i2) character comparisons. So, 
total number of comparisons for all phases is

123        i i+1
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-----------
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-

)()( 3

1

2 mOio
m

i

=∑
=



University of Central Florida

Suffix Link- how to be lazy but smart
(or walking is good for your health but not 

for your algorithm)

To avoid walking down the tree for each β, 
suffix links are introduced
Definition: Let an internal node v has a path 
label x α where x is a character and α is a a 
string (possibly empty). If there is another 
node s(v) in the tree with path label α, then 
a pointer from v to s(v) is called a suffix link, 
denoted (v,s(v)). If α is empty string ε, the 
suffix with path label x goes to the root. The root is 
not considered internal and has no suffix link.
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Suffix Link Examples
S=abababc S=aaaa$

o
o

o
o

o

o

a
a

a
a

a

a
a

a

a

b
b b

bb

c
bc

c

c

c

c

c o
o

o

o

$
$

$
$

$
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4
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Suffix Link Creation
Lemma: Let an internal node v with path 
label x α be added to the current tree Ii in 
extension j of the (i+1) phase. Then
Either an internal node with edgelabel α
already exits in the current tree Ii
Or an internal node with path label αwill be 
created in extension j+1 in the same phase 
i+1.
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Suffix Link Creation
Corollary 1: In Ukkonen’s algorithm, 
any newly created internal node will 
have a suffix link from it by the end of 
the next extension.
Corollary 2: In any suffix tree Ii , if an 
internal node v has a path label x α, 
then there is a node s(v) of Ii with path 
label α.
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First Extension
Using Rule 1 (once a leaf, always a leaf), 
the first extension can be done in 
constant time. Keep a pointer to the leaf 
node 1 of current tree Ii corresponding to 
S[1…i]. Just add s[i+1] at the end , node 
label still remains 1 and the pointer is 
adjusted to point to new node 1.
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Second Extension
Let S[1..i] =x α (  X a character, α could be 
ε). To do the extension, we need 
to find the end of S[2..i]= α in the 
current tree Ii .  Let (v,1) be the 
edge that enters leaf 1 { Node v 
could be the root [viz. for 
S=aaaa$] or an internal node.
If v is  the root, walk down the tree 
following the path label α.
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Second Extension
If v is an internal node, walk up from leaf 1 via edge 
(v,1) to node v.
Follow the suffix link (v,s(v)).
Walk from s(v) down the path checking for all the 
characters in the string γ which is the path label of (v,1). 
This journey may use more than one edge.
Update the tree following the applicable extension rule 
at the end of the path (it could be Rule 1,2 or 3).

dc ba
γ

γ= abcd
v s(v)

a b cd
(v,1)
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General Extension j>2
The procedure is essentially the same as for j=2 except we 
start from string S[j-1..i] in the curent tree Ii and walk up at 
most one node to either root or node v, follow path γ to the 
end of S[j..i] and then extend the suffix to s[j..i+1] using the 
applicable extension rule. 
There is one difference: the end of S[j-1..i] may itself have a 
suffix link; then do not walk up any node, just follow the suffix 
link.
If a new internal node was created in extension j-1(by 
extension Rule 2) then a string α must end at node s(w) [by 
Lemma]. Then create the suffix link (w, s(w)).



University of Central Florida

Single Extension Algorithm
Find the first node v at or above the end of S[j-i..i] that either 
has a suffix link from it or is the root. This requires walking up 
at most one edge with label γ .
If v is not the root , traverse suffix link  (v,s(v)) and then walk 
down γ from s(v). If v is the root follow the path S[j..i] from 
root, as in the naïve algorithm.
Using the extension rules, ensure that S[j..i]S[i+1] is in the 
tree.
If a new internal node was created in extension j-1(by 
extension Rule 2) then a string α must end at node s(w) [by 
Lemma]. Then create the suffix link (w, s(w)).

The suffix link improves the performance in practice but so far 
the worst case time complexity is still O(m3).
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Trick 1: Skip and Count
The complexity of walking down γ from s(v) is 
O(|γ|). g=| γ|=number of character in γ. No two 
edges out of s(v) have the sme character; so the 
first charcater of γ appears in a unique path from 
s(v). Let g’ be the number of characters in the edge 
with this unique character. If g’<g the algorithm can

γ
g

g’
γ

simply skip to the node at the end of the edge 
and set         g<- g-g’

h<- g’+1
and look for h th character of    for the next 
match to follow the downward  path.

γ
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Skip and Count
This process can be iterated for the succeeding 
edges as long as g’<g. When an edge is reached 
such that g<=g’, the algorithm skips to character 
number g in the path.

g=10

zabcdefghy

za
bc

def

ghy
a

v

s(v)
g’=2,g=8,h=3

g’=2,g=6,h=3

g’=3,g=3,h=4

Here g=g’
Skips to 3rd ch. y
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Complexity of Skip and Count 
It should be obvious that moving from node to node using (k,l) 
labels and the g and h values on the γ path takes constant 
time. The total time to traverse the path is thus depends on 
the number of nodes traversed rather than the number of 
characters.
Node Depth: Node depth of a node u is the number of nodes 
on the path from the root to u.
Lemma: Let (v,s(v)) be the suffix link traversed at any time in 
the algorithm. At this time, the node depth of v is at most 1 
greater than node depth of s(v)
Theorem: Using skip and count technique, any phase of 
Ukkonen’s algorithmtakes O(m) time
Corollary: Ukkonen’s algorithm can be implemented with 
suffix link to run in O(m2) time.



University of Central Florida

Trick 2: Rule 3 is a show stopper
Rule 3 means do nothing because the path labeled 
s[j..i] continues with character S[i+1]. So, do the 
paths labeled S[j+1..i], S[j+2..i] ,..,S[i]. Thus if 
extension Rule 3 applies in extension j, the same 
Rule 3 must apply to all succeeding extensions in 
(i+1) phase. This leads to:
Trick 2: End any phase i+1 the first time Rule 3 
applies. If this happens in extendsion j, then there 
isno need to explicitly find the end of any string 
S[k..i] for k>j.
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Extensions 1 in bulk
First, to conserve storage, we are not going to write the 
character sequences in any edge. Instead we use a pair of 
indices (k,l) to limit storage to O(m).
Second, due to “once a leaf, always a leaf” rule, once 
there is a leaf labeled j, extension Rule 1 will apply always 
to extension j in any successive phase. 
In any phase I, there is an initial sequence of consecutive 
extensions ( starting with extension 1) where extension 
Rule 1 or 2 applies. Let ji denote the last extension in 
phase i. It follows from “Once a leaf, always a leaf” that 
j,i<=ji+1 That is, the initial sequence of extension rules 1 or 
2 cannot shrink in successive phases.
Let us take an example.
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An example: S=axabxb
Phase i=1 (Note, in  phase i=0, the tree simply a single 

node, the root corresponding to the empty string ε)

β=ε;  Only one extension. βS[i+1]=a. 
I1 is with value of e=1 (1,e)

Phase i=2 Two extensions for 
suffixes ax and x . Suffix ax is
inserted using Rule 1 and x in 
inserted by using also Rule 1. 
Root node is not considered an
Internal node.

(2,e)

(Rule Sequence:11)

1

1 2
(1,e)

e=2
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Example (continued)
Phase i=3
Three extensions for suffixes axa, xa and a. Note, the 

first two extensions are simply copying I2 and 
adding last character S[i+1]=a to it at the leaf 
nodes by applying Rule 1. Then the last suffix is a 
single character a which is handled, in this case, by 
Rule 3 (do nothing). (2,e)

(Rule Sequence: 113)
1

2
3(1,e)

e=3
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Phase 4
Phase i=4
The four suffixes are axab,xab,ab and b
The Rule sequence is (1122). Note due to Rule 2, two explicit 

nodes have been
added. Thek values in (k.e)
for the edges are determined 
at the time Rule 2 is applied.
Note e=4 for all leaf nodes. 1 3 2

4(4,4)

(2,4)(4,4)

(1,1)

(2,4)
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Phase 5
Phase i=5
The sequencesare axabx, 
xabx,abx.bx and x.
Rule Sequence 
(11113) e=5

1 3 2

4
5

(Node 5 is implicit)

(4,5)

(2,5)

(1,1)

(2,5)
(4,5)
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Phase 6
Phase i=6
(Wait, wait!! You have been misleading us saying all these e-values are changed in 
O(m) times. If we change the value of e at every phase, it is going to take O(m2) time.)

Here’s the punch line! Don’t change the value
of e until the last phase and make e equal to
the value of maximum phase for the
i+1 extension, which is i+1. Since there
are total of m  extensions , the work 
involved in all the Rule 1 
applications is

O(m)
1 3 5

2

4
6

The suffixes are axabxb,xabxb,abxb,

bxb,xb and b

The Rule

Sequence: (111123)

(4,6)
(2,1)

(6,6) (3,6)

(1,1)

(2,6)
(3,6)
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Extension Sequences

The extension sequences for different phases 
are (1),(11),(113),(1122),(11113) and 
(111123). Note j1<j2=j3<j4=j5<j6..This 
suggests an implementation trick that 
avoids in phase i+1 all explicit extensions 1 
through ji. Only  constant time will be 
needed to do all these extensions.
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Trick Number 3
In phase i+1, when a leaf is first created and would 
normally be labeled as S[p…i+1] written as (p,i+1) 
on the edge, write this as (p,e), where e (denoting 
“the current end”) is a global variable to that is set 
to value i+1 once in each phase.
In phase i+1, the algorithm knows that Rule 1 will 
apply in extensions 1 through ji at least, only 
constant amount of  work is needed up to 
extensions ji to increment the value of e. The 
algorithm can then proceed to extension ji+1 and 
perform explicit work if needed.
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The Punch Line
With tricks 2 and 3, explicit extensions 
in phase i+1 (using SEA – Single 
Extension algorithm) are only required 
from extension ji+1 until the first Rule 
3 applies or until i+1 is done. All other 
extensions before or after those 
explicit extensions, are done implicitly.
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The Single phase Algorithm SPA
begin

1. Increment index e by i+1. By Trick 3, this 
correctly implements all implicit extensions 1 
through ji.

2. Explicitly compute successive extensions 
(using SEA) starting at ji+1 until reaching first 
extension j* where Rule 3 applies or until all 
extensions are done in this phase. By Trick 2 
(show stopper), this correctly implements all the 
additional implicit extensions j* +1 through j+1.

3. Set ji+1 to j* to prepare for the next phase.
end


	Suffix Tree
	O(m) Storage Suffix Tree
	Implicit Suffix Tree
	Ukkonen’s Algorithm
	High-Level Description
	Types of Nodes
	Suffix Extension Rules
	Extension Rule 3
	An example: S=axabxb
	Example (continued)
	Phase 4
	Phase 5
	Phase 6
	Properties of Rule Sequence
	The Naïve Algorithm
	Suffix Link- how to be lazy but smart�(or walking is good for your health but not for your algorithm)
	Suffix Link Examples
	Suffix Link Creation
	Suffix Link Creation
	First Extension
	Second Extension
	Second Extension
	General Extension j>2
	Single Extension Algorithm
	Trick 1: Skip and Count
	Skip and Count
	Complexity of Skip and Count 
	Trick 2: Rule 3 is a show stopper
	 Extensions 1 in bulk
	An example: S=axabxb
	Example (continued)
	Phase 4
	Phase 5
	Phase 6
	Extension Sequences
	Trick Number 3
	The Punch Line
	The Single phase Algorithm SPA

