Mid Term 2

Hough Transform
- Line, circle fitting

- Generalized Hough transform
Interest point, corner detectors
Pixel based optical flow

Token based optical flow

Global motion

Shape from motion

Geometry of a stereo camera pair
Stereopsis

Epipoloar Geometry
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e Hough Transform

e Interest point, corner detectors
e Pixel based optical flow

e Token based optical flow

e Global motion
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Hough Transform

e Line fitting xcos@+ysind=p
- 2D accumulator array A. Fix 8 compute p.
- Increment (6,p) entry of A
e Circle fitting (x—x,)*+(y-y,)>-r*>=0
- 3D accumulator array A. Fix X,, Y, compute r.
- Increment (x,,y,,l) entry of A
e Practical circle fitting
- Compute gradient direction at an edge point (6)
- Fixrcompute X,=X-rcosé y,=y-rsinéd
- Increment (X,,Y,,I) entry of A
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Generalized Hough Transform

e For shapes with no analytical expression

e Requires learning of shape ol .
- For each edge compute direction #and distance | @ | r14.r21,r23 ..
r from centroid (3 | 141,142,133 ...
- Construct a table indexed by & (r-table) | 0. r12.13..

° Shape fitting (detecting)
Construct 2D accumulator array for (X,,Y,)
- Compute gradient direction ¢ for each edge point
- Go to corresponding row of r-table
- Compute possible x, and y, from (6,r) pair

- Increment accumulator array
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Interest Points and Corner
]

e High texture variation around a pixel
- T-joints, cross joints etc. T X

A

e Movarec’s interest operator

- Select 12x12 neighborhood around a pixel

- Compute intensity variation v in overlapping

4x4 neighborhoods

- If v for central 4x4 is equal or higher to v all

other 4x4, mark pixel as interest point
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Harris Corner detector
]

e Smooth image (gaussian filter)

e Compute image derivatives I, and I,

e Smooth image gradients (gaussian filter)
([ ]

Construct gradient matrix in a neighborhood

- Find eigenvalues of M

- Save smallest eigenvalue in a corner strength array A

- Perform non-maximum to A and apply threshold to mark

w- & B
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Optical Flow

e Brightness constancy
1(X,y,t) = 1(X+AX, Yy + Ay, t + At)

— ‘__/W%pansion
ul, +vl, +1,=0

e Forgiven I, I, and I, there are a set of (u,v) pairs
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Normal flow (can be computed)

___—> Parallel flow (can NOT be computed)
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Optical Flow

e Horn & Schunck (1981)
- Regularization of optical flow (defines 2 energy terms)
e Brightness constraint energy  Eg(x,y) = (ul, +vl, +1,)?
e Smoothness energy Es (X, y) = (U} +uZ + v +V?)
- Minimize E(x,y) :J(EB(X, y)+AE¢ (x, y))dxdy iteratively
e Schunk (1989)
- Neighboring pixels move with same motion
- Form intersecting lines in (u,v) space
- Biggest cluster of intersection is the optical flow
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Optical Flow

e Lucas & Kanade (1981)
- Least squares method. Minimize E =) (ul, +vl, +1,)?

- Take derivatives wrt. u and v equal it to 0.
e 2 unknowns 2 equations (Lecture 14 slides 26-28)

- Compute unknowns using least squares.

M‘zuszwl—(zw)?[—%:fu E:?Iy}g:ﬂ
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Optical Flow
e ——
e Optical methods work only for small motion.

e If object moves faster, the brightness
changes rapidly, derivative masks falil to
estimate spatiotemporal derivatives.

e Gaussian pyramids can be used to compute
large optical flow vectors.
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Block Based Optical Flow o
.|

e First approach
- Find tokens in 1stimage
- Search similar tokens in 2" image using correlation
methods
e Second approach
- Find tokens (corners etc.) in both images

- Find correspondence between tokens by enforcing
constraints, such as, maximum speed, common motion,
minimum velocity, consistent match
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Block Based Optical Flow
First Approach

e Select a patch P image at time t

e Search for P at frame t+1 in a larger neighborhood
- Compute similarity between original patch and search patch
- Construct a correlation surface
- Select maximum

2 E & 8 B s u

T & =W B owm oW
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Block Based Optical Flow
Issues With Correlation

Patch Size
Search Area
How many peaks

Computationally expensive

- Same operations in Fourier domain takes less time
e Take FFT of image patch and search area
e Multiply Fourier coefficients to construct corr. surface
e Find maximum

Should use pyramids here too for large displacements
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Block Based Optical Flow
Second Approach

Find initial correspondences using correlation

Compute costs w;; for each pair of points a;, b;

Construct a bipartite graph based on computed costs
Prune all edges having weights exceeding certain
threshold

- Define cost matrix

e Find the minimum matching of constructed graph.

- Hungarian Algorithm

- Greedy search
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u(x, y) =a,x+a,y+b, \gj

V(X y) =a;x+a,y+b,

Global Motion (Anandan’s Approach)
.|

e Common motion observed by most of the pixels in
the frame

e Reasons are camera motion or motion of rigid scene
e Uses brightness constraint

e Common motion model is affine (among others)
- Affine can handle translation, rotation, shear, scaling

e Minimize energy function E=) . (ul, +vl, +1,)’
- Unknowns are a,...a,,b;,b,
- Take derivative make it equal to zero
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Global Motion (Anandan’s Approach)
G

E(@= > (I, +Al"Xa)®

all pixels

%k _, D (AITX) (1, +AITXa) =0

all pixels

D XTAI + D XTAIAI"Xa=0

all pixels all pixels

D XTAIAITXa=— Y X"All,  ==) a=A"'B
\all pixels ) \ allpixels )
Y Y

A B
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Iterative Update of Affine Parameters

intermediate iteration
A /\ A

image at time t image at time t+1

X'=(A +1)X +B, X"=(A+1)X"+B,
A= AN
X'"'= AAX +AB, + Bl<
B=AB,+B,
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3D Motion

e Displacement model
e Velocity model

X X 1 —a B|X||T X'=X-aY+pZ+T,
YI=ERIYHTH a 1 —y|[YHT,| = Y =aX+Y-)Z+T,
zZ z -4y 1(Z]||T, Z'=-pX+ N +Z+T,

%/_/

Rotation matrix
using Euler angles
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Displacement Model and

Its Projection onto Image Space
.|
X'=X-aY +[Z+T,
Y'=aX +Y —yZ +T,
Z'=—pX+N+Z+T,

Orthographic projection Perspective projection

X—ay+ f +

Tx

X'=X—ay+fZ+T, X':% X' =

X+ N +Z+T, - Bxayy +ls
"=ax+y—-yZ+T
y y=r ! i oX+Y )2+ T ax+y-y+

T,
z
Y

T

X+ N HZ4T, |V =

- X+ yy +1+

z_
T,

Fa
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Velocity Model in 3D
Optical Flow

(X111 - BIX][T,
YIHa 1 —|YHT Starting with the displacement
Z] =8y 11Z][%,

X’ 0 —-a B [1 0 0o]\X] [Ty
Y |=||a 0 —y[+[0 1 0||Y |[+|T,
A -p 7y 0| |00 1||z]| |T,
(X'-X1 [0 -a pTXx] [T,
Y'-Y { a 0 7/]Y }+{TY]
Z-z | |- » ofz]||T,
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Velocity Model in 3D
Optical Flow

X=X 0 —-a pI|X
Y=Y |=la 0 —y|Y |+
Z-Z | |-p y 0]Z

rotational velocities

e - translational velocities
X 0 <o, o, x] v /
Yi=| @ N0 -QJY 4|V, « o
eelii-- . \ ! 1
Z] [ & 0 JZ]3V,] x=|y | a=|q,
ﬂ z Q,
X=QxX+V
\
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X =0Q,Z-Q,Y +V, @
=

Y=Q.,X -Q,Z+V,
Z=0QY -Q,X +V,

Velocity Model in 2D
.

e Orthographic projection

X=X u=x=X u=Q,Z -Q,y+V,
y=Y v=y=Y V=0Q,x-Q,Z +V,

e Perspective projection

X
x=f 52 U= % u= f(\%+92)—\;—3x—§23y—%xy+%x
Y : V=y : V, vV, Q, Q
y=f— V= -Q)+Qx-y+—=xy-—*y
7 z z f f

HOMEWORK
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Epipolar Geometry

p

° e Co-planarity condition

- 3vectors on a plane

AT(BxC)=0

- Let's define for epipolar
plane

------------- (R-T)(TxR)=0

: RPJ/(TxR)=0

P'RSP, =0
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Essential Matrix

e Related to camera extrinsic parameters
- Rotation and translation

PTRSP =0
E =RS

e Captures relation between to camera
coordinates
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Fundamental Matrix

e From camera coordinates to image
coordinates.

- Intrinsic camera parameters (in homogenous
coordinates)

X' M TRSM,*x, =0

E=RS
F=MRSM,™

Fundamental matrix
F=MTEM'
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