

Greedy Algorithm
Algorithm A
1. For $k = 2$ to $n - 1$ do
(a) Construct M an $(m*m)$ matrix, with the points from kth frame along the rows and points from $(k + 1)$ th frame along the columns. Let $M[i, j] = \delta(X_p^{k-1}X_i^kX_j^{k+1})$, when $\Phi^{k-1}(p) = i$.
(b) for $a = 1$ to m do
i. Identify the minimum element $[i, l_i]$ in each row i of M . ii. Compute priority matrix B , such that $B[i, l_i] = \sum_{j=1, j \neq i}^m M[i, j] + \sum_{k=1, k \neq i}^m M[k, l_i]$ for each i .
iii. Select $[i, l_i]$ pair with highest priority value $B[i, l_i]$, and make $\Phi^{s}(i) = l_i$. iv. Mask row i and column l: from M
Figure 5.8: Motion correspondence using multiple frames.
Alper Yilmaz, Fall 2005 UCF