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Recap
Motion

Brightness constancy constraint

Optical flow equation, brightness constancy 
equation

– Normal flow can be computed
– Parallel flow cannot
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Recap
Computing Optical Flow

Define energy function
– Brightness constancy + smooth solution 

(Horn&Schuck)
– Common flow (Schuck)
– Brightness constancy (Lucas&Kanade)

Least squares fitting
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Recap
Global Motion

Common motion of pixels observed in frame
– Camera motion or rigid object motion

Affine Model
– Affine Transformation
– Affine Motion



3

Alper Yilmaz, Fall 2005 UCF

Recap
Affine Transformation

Direct relation between pixel positions
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Recap
Affine Motion

image at time t
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Recap
Affine Motion and Transformation

Transformation Motion
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Recap
Anandan’s Approach (Affine 
Motion)
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Xau =

James R. Bergen, P. Anandan, Keith J. Hanna, Rajesh Hingorani: “Hierarchical 
Model-Based Motion Estimation," ECCV 1992: 237-252
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Algorithm
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Block Based Optical Flow
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Block Based

Select a patch P image at time t
Search for P at frame t+1 in a larger 
neighborhood

P
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Block Search

Search for patch in 
overlapping windows
Compute similarity of 
intensity values between 
original patch and search 
patch
Select the location with 
highest similarity
Distance vector between 
centroids give optical flow 
vector
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Computing Similarity
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Sum of square differences

Absolute difference

Cross correlation

Normalized correlation
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µ, σ are region mean and stdv
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Correlation Surface

Using Cross correlation ∑∑ += tt II 1CC

mission reference Correlation surface

Find peak in 
correlation 
surface
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Issues With Correlation 

Patch Size
Search Area
How many peaks
Computationally expensive

– Same operations in Fourier domain takes less time
Take FFT of image patch and search area
Multiply Fourier coefficients to construct corr. surface
Find maximum

Should use pyramids here too for large displacements
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Token Based Optical Flow
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Tokens

Interest points
– Movarec’s operator

Corners
– Harris corner detector

Edges
– Any edge detection algorithm
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Overview

Given two consecutive images
Find tokens in both images
Find token correspondences

Frame at time t Frame at time t+1
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Representing the Correspondence

A graph G(V,E) is a triple consisting of a 
vertex set V an edge set E and a relation that 
associates two vertices with an edge.
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Representing the Correspondence

Bipartite graph: A graph G is bipartite if its 
vertex set can be partitioned in two subsets 
such that no two vertex in same set have a 
common edge.
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Finding Correspondence

Finding matching: Matching is a set of edges such that  
no two of them have a common vertex
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Token Based 
Optical Flow

Tokens corresponds to vertices in the 
bipartite graph
Tokens at time instants t and t+1 form partite 
sets of graph.
The cost of corresponding a point at instant t
to a point at instant t+1 is the weight of edge 
between the corresponding vertices.
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Defining Weights

Maximum Speed

Consistent Match

Common Motion Minimum 
Velocity

Model
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Weights
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Algorithm

Find initial correspondences using correlation
Compute costs wij for each pair of points xi, yj

Construct a bipartite graph based on computed costs
Prune all edges having weights exceeding certain 
threshold

– Define cost matrix

Find the minimum matching of constructed graph.
– Hungarian Algorithm
– Greedy search
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Greedy Algorithm


