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Recap (Filtering)

Modify pixels based on the neighborhood
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Linear Filtering

The output is the linear combination of the 
neighborhood pixels
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Filtering Examples
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Filtering Examples
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Filtering Examples
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Filtering Examples
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Blurring Examples
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Filtering Gaussian
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Gaussian vs. Smoothing

Gaussian Smoothing Smoothing by Averaging
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Noise Filtering

Gaussian Noise

After Gaussian Smoothing

After Averaging
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Noise Filtering

Salt & Pepper Noise

After Gaussian Smoothing

After Averaging
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Edge Detection
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Example
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An Application

What is an object? 
How can we find it?
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Edge Detection in Images

Can occur due to different sources
– Shadows
– Texture
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What is an Edge?

Discontinuity of intensities in the image
Edge models
– Step
– Roof
– Ramp
– Spike

Step Ramp

Roof Spike
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Detecting Discontinuities

Image derivatives

Convolve image with derivative filters

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ −+

=
∂
∂

→ ε
ε

ε

xfxf
x
f

0
lim ( ) ( )

x
xfxf

x
f n

∆
−

≈
∂
∂ +1

Backward difference

Forward difference

Central difference

[-1   1]

[1   -1]

[-1   0  1]



10

Alper Yilmaz, Fall 2005 UCF

Derivative in Two-Dimensions

Definition

Approximation

Convolution kernels
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Image Derivatives
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Derivatives and Noise

Strongly affected by noise
– obvious reason: pixels 

look very different from 
their neighbors

The larger the noise is the 
stronger the response

What is to be done?
– Neighboring pixels look 

alike
– Pixel along an edge look 

alike
– Image smoothing should 

help 
Force pixels different to 
their neighbors (possibly 
noise) to look like 
neighbors
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Derivatives and Noise

Zero mean additive gaussian noise

Increasing noise
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Image Smoothing

Expect pixels to “be like” their neighbors
– Relatively few reflectance changes

Generally expect noise to be independent 
from pixel to pixel
– Smoothing suppresses noise
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Gaussian Smoothing

Scale of Gaussian σ
– As σ increases, more pixels are involved in average
– As σ increases, image is more blurred
– As σ increases, noise is more effectively suppressed 

2

22

2
(

),( ο
yx

eyxg
+−

=



13

Alper Yilmaz, Fall 2005 UCF

Gaussian Smoothing (Examples)
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Edge Detectors

Gradient operators
– Prewit
– Sobel

Laplacian of Gaussian (Marr-Hildreth)
Gradient of Gaussian (Canny)
Facet Model Based Edge Detector (Haralick)
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Prewitt and Sobel Edge Detector

Compute derivatives
– In x and y directions

Find gradient magnitude
Threshold gradient magnitude
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Prewitt Edge Detector

image blurred edges in xaverage
smoothing in x

derivative
filtering in x
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Sobel Edge Detector

image blurred edges in xaverage
smoothing in x

derivative
filtering in x
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and
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Sobel Edge Detector

Image I
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Sobel Edge Detector
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Sobel Edge Detector
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Exercise

Code Sobel and Prewitt edge detectors.
– Reading images
– Use of convolution

Gradient computation

– Thresholding
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Suggested Reading

Chapter 4, Emanuele Trucco, Alessandro 
Verri, "Introductory Techniques for 3-D 
Computer Vision"
Chapter 2, Mubarak Shah, “Fundamentals of 
Computer Vision”


