
Introduction to Neural
Networks

for CAP4453

Single Neuron

Basic computational unit of Neural Network

Single Neuron

Basic computational unit of Neural Network

Inputs (x1, x2) : Data you want to model.

x1 = 2

x2 = 5

Single Neuron

Basic computational unit of Neural Network

Inputs (x1, x2) : Data you want to model.

x1 = 2

x2 = 5Weights (w1, w2) : Model Parameters

w1 = .5

w2 = -0.3

Single Neuron

Basic computational unit of Neural Network

Inputs (x1, x2) : Data you want to model.

x1 = 2

x2 = 5Weights (w1, w2) : Model Parameters

w1 = .5

w2 = -0.3

Bias (b) : Model parameter to account for Noise

b = .1

Single Neuron

Basic computational unit of Neural Network

Inputs (x1, x2) : Data you want to model.

x1 = 2

x2 = 5Weights (w1, w2) : Model Parameters

w1 = .5

w2 = -0.3

Bias (b) : Model parameter to account for Noise

b = .1

z = w1*x1 + w2*x2 + b
z = .5*2 + 5*(-0.3) + .1
z = -0.4

Computation step 1 - Weighted Summation to
perform Linear modelling

z = w1 * x1 + w2 * x2 + b

Single Neuron

Basic computational unit of Neural Network

Inputs (x1, x2) : Data you want to model.

x1 = 2

x2 = 5Weights (w1, w2) : Model Parameters

w1 = .5

w2 = -0.3

Bias (b) : Model parameter to account for Noise

b = .1

z = w1*x1 + w2*x2 + b
z = .5*2 + 5*(-0.3) + .1
z = -0.4

Computation step 2 - Adding Non Linearity

a = σ(z), where sigma is

a = σ(z)

a = 0.598

Computation step 1 - Weighted Summation to
perform Linear modelling

z = w1 * x1 + w2 * x2 + b

The Vertical Segment is the reminder to do the Non-linear step.

Single Neuron

Basic computational unit of Neural Network

Inputs (x1, x2) : Data you want to model.

x1 = 2

x2 = 5Weights (w1, w2) : Model Parameters

w1 = .5

w2 = -0.3

Bias (b) : Model parameter to account for Noise

b = .1
Computation step 1 - Weighted Summation to
perform Linear modelling

z = w1 * x1 + w2 * x2 + b or

z = w1*x1 + w2*x2 + b
z = .5*2 + 5*(-0.3) + .1
z = -0.4

a = σ(z)

a = 0.598

Output - ŷ

a = ŷ

General Structure

b

Computation step 2 - Adding Non Linearity

a = σ(z), where sigma is

The Vertical Segment is the reminder to do the Non-linear step.

Activation Function
Adds Non-Linearity to the Neural Network to fit Non-Linear patterns

g(z) = max(0,z) g(z) = max(0.01z,z)

Sigmoid Tanh

Each Activation Function has pros and cons (http://cs231n.github.io/neural-networks-1/#intro)

http://cs231n.github.io/neural-networks-1/#intro

A Simple Example for Neural Network
The Collection of Neurons is organized in three
main layers:

A Simple Example for Neural Network
The Collection of Neurons is organized in three
main layers: the input layer

A Simple Example for Neural Network
The Collection of Neurons is organized in three
main layers: the input layer, the hidden layer

A Simple Example for Neural Network
The Collection of Neurons is organized in three
main layers: the input layer, the hidden layer, and
the output layer

A Simple Example for Neural Network
The Collection of Neurons is organized in three
main layers: the input layer, the hidden layer, and
the output layer

A neural network can have many hidden layers.

A Simple Example for Neural Network
The Collection of Neurons is organized in three
main layers: the input layer, the hidden layer, and
the output layer

A neural network can have many hidden layers.

In an artif icial neural network, there are s everal inputs ,
which are called features, and produce a s ingle output.

A Simple Example for Neural Network
The Collection of Neurons is organized in three
main layers: the input layer, the hidden layer, and
the output layer

A neural network can have many hidden layers.

In an artif icial neural network, there are s everal inputs ,
which are called features, and produce a s ingle output.

In the figure, we model a s ingle hidden layer with three
neurons and s ingle output.

A layer is fully connected layer if each neuron in the layer is
connected to all neurons in the previous layer.

A Simple Example for Neural Network
The Collection of Neurons is organized in three
main layers: the input layer, the hidden layer, and
the output layer

A neural network can have many hidden layers.

In an artif icial neural network, there are s everal inputs ,
which are called features, and produce a s ingle output.

In the figure, we model a s ingle hidden layer with three
neurons and s ingle output.

A layer is fully connected layer if each neuron in the layer is
connected to all neurons in the previous layer.

w1

w2

w3

w4

w5

w6

w7

w9

w8

Weights do the
learning!

How to train a neural network?
Example: design a binary classifier which outputs 1 if the
absolute difference in the inputs is an odd number.

Sample data:

abs(2 - 5) = 3, output = 1

abs(5 - 3) = 2, output = 0

We start with random weights.

Note: a1,a2,.. denote single neuron’s output,

whereas, ŷ/out denotes the final network’s output.

x1

x2

z1 a1

z2 a2

z3 a3

z out

w7

w8

w9

w1

w2

w3

w4 w5

w6

Forward Pass
Bias: b1 = 0.1, b2 = 0.2

Weights = Random generated

For each neuron, we calculate:

a1 =

a1 = σ(0.2*2+0.8*9+0.1)

a1 = σ(7.7)

a1 = 0.99 [putting 7.7 in the s igmoid function]

2

9

0.9995

Forward Pass
Bias: b1 = 0.1, b2 = 0.2

Weights = Random generated

For each neuron, we calculate:

a =

a2 = σ(0.6*2+0.3*9+0.1) = σ(4) = 0.9820

a3 = σ(0.1*2+0.7*9+0.1) = σ(6.6) =0.9986

2

9

0.9995

0.9820

0.9986

Forward Pass
Bias: b1 = 0.1, b2 = 0.2

Weights = Random generated

For each neuron, we calculate:

a =

a2 = σ(0.6*2+0.3*9+0.1) = σ(4) = 0.9820

a3 = σ(0.1*2+0.7*9+0.1) = σ(6.6) =0.9986

ŷ = σ(0.9995*0.4 + 0.9820*0.5 + 0.9986*0.9 + 0.2) = σ(1.9895) = 0.8796

2

9

0.9995

0.9820

0.9986

0.8796

Calculating the error
The true label for output = 1

We have two input numbers and two classes:

Odd (1) and Even (0)

we need to alter weights to make our inputs(e.g., 2
and 9) equal to the corresponding output(i.e., 1).

This is done through a method called
backpropagation.

Works by using a loss function to calculate how far
the network was from the target output.

2

9

0.9995

0.9820

0.9986

0.8796

Loss Function

● Calculates error between the actual output and the predicted output.
● The error is back-propagated to update the weights.
● Ideally, if model (the weights and bias) is perfect then the error should be

zero.
● We choose loss function based on the application.
● For example

○ Binary Classification - Cross Entropy (or log loss)
○ Multiclass Classification - Multi-class Cross Entropy
○ Regression - Mean Square Error

Gradient Descent (GD)
● A gradient measures how much the output of a function changes if you change the inputs a little bit.
● Commonly used optimization algorithm while training a machine learning model.
● It tweaks model parameters iteratively to minimize a given function to its local minimum.
● As shown, at each step GD tries to converge to minimum.

Source: https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0

Steps in GD:
● Perform forward pass.
● Calculate error.
● Back propagate error as gradients.
● These gradients at each step update weights using the

equation (Wk+1 = Wk - learning_rate*(gradient))
● Perform above steps iteratively until error reaches minimal

value.

Learning Rate
● A major component of Gradient descent is learning rate.
● Learning rate decides how big the steps are that the GD takes in the direction of the local-minimum.
● In order for Gradient Descent to reach the local minimum, we have to set the learning rate to an

appropriate value, which is neither too low nor too high.

● If the steps it takes are too big, it maybe will not
reach the local minimum because it just bounces
back and forth between the convex function of
gradient descent

● If you set the learning rate to a very small value,
gradient descent will eventually reach the local
minimum but it might take too much time as you
can see (may happen) on the right side of the
figure.

Source: https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0

Back to our example: Calculating the error
We can now calculate the error for each output neuron using the squared error
function and sum them to get the total error:

In our case, we have single output neuron. The target output = 1, but the neural
network output = 0.8796

Therefore, its error is E = (1/2)(1- 0.8796)2 = 0.00724808

backpropagation: to update each of the weights in the network so that they cause
the actual output to be closer to the target output, thereby minimizing the error for
each output neuron and the network as a whole.

http://en.wikipedia.org/wiki/Backpropagation#Derivation

The Backward Pass
Remember the update step in the Gradient
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● To calculate gradients :

○ We want to know how much a change in weights affects
the error.

2

9

0.9995

0.9820

0.9986

0.8796

a1

a2

a3

out

w7

w8

w9

w1

The Backward Pass
Remember the update step in the Gradient
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● To calculate gradients :

○ We want to know how much a change in weights affects
the error.

○ In this example, we will jus t s how backpropagation for
the highlighted s ubgraph.

○ You can complete res t of the calculation as an exercis e.
2

9

0.9995

0.9820

0.9986

0.8796

a1

a2

a3

out

w7

w8

w9

w1

The Backward Pass
Remember the update step in the Gradient
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1

● Us ing chain rule: ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7
● ∂E/ ∂out = ∂[1/ 2(target - out)2]/∂out

∂E/ ∂out = ½ * 2(target - out)2-1(-1)+0
= -(target - out) = - (1 - 0.8796) = - 0.1204

z aw7 out

Chain rule illustration
z = a1*w7 + a2*w8 + a3*w9 + b2 * 1
z1 = w1*x1 + w4* x2 + b1*1
(refer to s lide 18 for full example)

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a

x1, x2 are inputs.

w7w1

0.40.2

The Backward Pass
Remember the update step in the Gradient
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1

● Us ing chain rule: ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7

● Out = Sigmoid function =

● ∂σ/ ∂z = σ(1-σ)
● [For complete derivation, s ee this link:

https :/ / beckernick.github.io/ s igmoid-derivative-neural-network/]
● ∂out/ ∂z = ∂σ/ ∂z = 0.8796 (1 - 0.8796) = 0.1059

z aw7 out

Chain rule illustration

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a
w7w1

0.40.2

https://beckernick.github.io/sigmoid-derivative-neural-network/

The Backward Pass
Remember the update step in the Gradient
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1

● Us ing chain rule: ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7
● ∂z/ ∂w7 = ∂(a1*w7 + a2*w8 + a3*w9 + b2 * 1)/ ∂w7

= a1 + 0 + 0
= a1 = 0.9995

z aw7 out

Chain rule illustration

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a
w7w1

0.40.2

The Backward Pass
● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule: ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7

Putting it a ll together:

● ∂E/ ∂w7 = -0.1204 * 0.1059 * 0.9995
= -0.0127

z aw7 out

Chain rule illustration

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a
w7w1

0.40.2

The Backward Pass
● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule: ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7

Putting it a ll together:

● ∂E/ ∂w7 = -0.1204 * 0.1059 * 0.9995
= -0.0127

To decrease the error, we then subtract this value from the current weight.
● w7 = w7 - learning_rate * (-0.0127)

● w7 = 0.4 - 0.1 * (-0.0127) = 0.40127 (assume learning_rate = 0.1)

z aw7 out

Chain rule illustration

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a
w7w1

0.40.2

The Backward Pass
● For backward pass, we need to calculate derivatives

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule for hidden layer: ∂E/ ∂w1 = ∂E/ ∂a1 *

∂a1/ ∂z1 * ∂z1/ ∂w1

● ∂E/ ∂a1 = ∂E/ ∂z * ∂z/ ∂a1

Us ing previous ly calculated values we have
∂E/ ∂z = ∂E/ ∂out * ∂out/ ∂z = -0.1204 * 0.1059 = −0.01275

● ∂z/ ∂a1 = ∂(a1*w7 + a2*w8 + a3*w9 + b2 * 1)/ ∂a1 =
w7+0+0+0 = w7 = 0.4

● ∂E/ ∂a1 = ∂E/ ∂z * ∂z/ ∂a1 = −0.01275*0.4 = −0.0051

z1 w1 a1

Chain rule illustration

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a

a1

w7w1

0.40.2

The Backward Pass
● PLEASE NOTE: Using chain rule for hidden layer:

w7w12 0.99 0.87

∂E/∂w7∂E/ ∂w1

x1 z1 a1 z a
w7w1

0.40.2∂E/ ∂w1 = ∂E/∂a1 * ∂a1/∂z1 * ∂z1/∂w1

∂E/ ∂w1 = ∂E/∂out * ∂out/∂z * ∂z/∂a1 * ∂a1/∂z1 * ∂z1/∂w1

simply expands to

Compare this to below

∂E/ ∂w7 = ∂E/∂out * ∂out/∂z * ∂z/∂w7

z1 w1Chain rule illustration for ∂E/∂w1: a1 z aw7 outx1 ETotal

The Backward Pass
● For backward pass, we need to calculate derivatives

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule for hidden layer: ∂E/ ∂w1 = ∂E/ ∂a1 *

∂a1/ ∂z1 * ∂z1/ ∂w1

● ∂a1/ ∂z1 = σ(1-σ) [a1 is a ls o an output of the s igmoid
function]

= 0.9995 (1-0.9995) = 0.00049975

● ∂z1/ ∂w1 = ∂(w1*x1 + w4* x2 + b1*1)/ ∂w1
= x1 + 0 + 0 = 2

Putting it a ll together: ∂E/ ∂w1 = ∂E/ ∂a1 * ∂a1/ ∂z1 * ∂z1/ ∂w1
= −0.0051 *

0.00049975 * 2 = - 5.097E-6

z1 w1 a1

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a

a1

Chain rule illustration

w7w1

0.40.2

The Backward Pass
● For backward pass, we need to calculate derivatives

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule for hidden layer: ∂E/ ∂w1 = ∂E/ ∂a1 *

∂a1/ ∂z1 * ∂z1/ ∂w1

● ∂a1/ ∂z1 = σ(1-σ) [a1 is a ls o an output of the s igmoid
function]

= 0.9995 (1-0.9995) = 0.00049975

● ∂z1/ ∂w1 = ∂(w1*x1 + w4* x2 + b1*1)/ ∂w1
= x1 + 0 + 0 = 2

Putting it a ll together: ∂E/ ∂w1 = ∂E/ ∂a1 * ∂a1/ ∂z1 * ∂z1/ ∂w1

= −0.0051 * 0.00049975 * 2 = - 5.097E-6

Updating w1 = w1 - learning_rate * gradient
w1 = 0.2 - 0.1*(-5.097E-6) = 0.20000051

z1 w1 a1

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a

a1

Chain rule illustration

0.40.2

w7w1

After update, new weights would be

2 0.99 0.87
w7w1

0.20000051 0.40127

● Perform the forward pass and backward pass steps iteratively until the loss reaches
minimal value.

Practice Calculations:

2

9

0.9995

0.9820

0.9986

0.8796

a1

a2

a3

out

w7

w8

w9

After one iteration, the updated weights for
w2, w6, w8, and w9 are:

● w8 = 0.50125
● w9 = 0.90127325094
● w2 = 0.60002253753
● w6 = 0.70001443866

w1

w6

w2

Summary
- The whole process of Forward propagation and backpropagation constitute a single iteration.

- This process is iteratively repeated until loss value reaches a minimum value and weights become

stable.

- In practice, we don’t train the model on single example, rather we train it on many many different

examples and the model weights are updated slowly towards a convergence point.

- When we train the model on different examples, the model learns weights to produce the output

close to the target output.

Layers organization in a Neural Network

Source: http://cs231n.github.io/neural-networks-1/#intro

	Introduction to Neural Networks�for CAP4453
	Single Neuron
	Single Neuron
	Single Neuron
	Single Neuron
	Single Neuron
	Single Neuron
	Single Neuron
	Activation Function
	A Simple Example for Neural Network
	A Simple Example for Neural Network
	A Simple Example for Neural Network
	A Simple Example for Neural Network
	A Simple Example for Neural Network
	A Simple Example for Neural Network
	A Simple Example for Neural Network
	A Simple Example for Neural Network
	How to train a neural network?
	Forward Pass
	Forward Pass
	Forward Pass
	Calculating the error
	Loss Function
	Gradient Descent (GD)
	Learning Rate
	Back to our example: Calculating the error
	The Backward Pass
	The Backward Pass
	The Backward Pass
	The Backward Pass
	The Backward Pass
	The Backward Pass
	The Backward Pass
	The Backward Pass
	The Backward Pass
	The Backward Pass
	The Backward Pass
	After update, new weights would be
	Practice Calculations:
	Summary
	Layers organization in a Neural Network

