Solution 3.8.1.7

Applying the Laplace transform, assuming zero initial conditions, yields
\[s^2 Y(s) + 11sY(s) + 10Y(s) = U(s), \]
or
\[(s^2 + 11s + 10)Y(s) = U(s). \]
Rearranging yields
\[\frac{Y(s)}{U(s)} = \frac{1}{s^2 + 11s + 10}. \]

Solution 3.8.1.13

Applying the Laplace transform, assuming zero initial conditions, yields
\[s^4 Y(s) + 15s^3Y(s) + 74s^2Y(s) + 135sY(s) + 72Y(s) = U(s) + sU(s), \]
or
\[(s^4 + 15s^3 + 74s^2 + 135s + 72)Y(s) = U(s)(s + 1). \]
Rearranging yields
\[\frac{Y(s)}{U(s)} = \frac{s + 1}{s^4 + 15s^3 + 74s^2 + 135s + 72}. \]
Solution 3.8.3.2

Let

\[
Z_1 = \frac{R_1}{C_1 s} \left(\frac{R_1}{R_1 + \frac{1}{C_1 s}} \right) = \frac{R_1}{R_1 C_1 s + 1}
\]

and

\[
Z_2 = R_2 + \frac{1}{C_2 s} = \frac{R_2 C_2 s + 1}{C_2 s}
\]

Then

\[
\frac{Z_2}{Z_1} = \frac{R_2 C_2 s + 1}{C_2 s} \times \frac{(C_2 s)(R_1 C_1 s + 1)}{(C_2 s)(R_1 C_1 s + 1)} = \frac{(R_2 C_2 s + 1)(R_1 C_1 s + 1)}{R_1 C_2 s}
\]

\[
= \frac{(R_2 / C_1)(s + (1 / R_1 C_1) s + (1 / R_2 C_2))}{s}
\]

We next have to choose some values. We know that

\[
\frac{R_2}{C_1} = 10
\]

\[
\frac{1}{R_1 C_1} = 0.1
\]

\[
\frac{1}{R_2 C_2} = 1.
\]

If we choose

\[
R_1 = 10^6 \Omega \quad C_1 = 10^{-4} \text{f} \quad R_2 = 10^5 \Omega \quad \text{and} \quad C_2 = 10^{-5} \text{f}
\]

Then

\[
G(s) = \frac{-10(s + 0.1)(s + 1)}{s}
\]

and we have achieved a PID compensator.
Let

\[Z_1 = R_1 \| C_1 \]
\[= \frac{R_1}{R_1/C_1 + 1} \]
\[= \frac{R_1}{R_1 + 1/C_1} \]
\[= \frac{1}{R_1C_1 + 1} \]

and

\[Z_2 = R_2 \| C_2 \]
\[= \frac{R_2}{R_2/C_2 + 1} \]
\[= \frac{R_2}{R_2 + 1/C_2} \]
\[= \frac{R_2}{R_2C_2 + 1} \]

Then

\[Z_1 + Z_2 = \frac{R_1}{R_1C_1 + 1} + \frac{R_2}{R_2C_2 + 1} \]
\[= \frac{(R_1R_2C_2 + R_1) + (R_1R_2C_1 + R_2)}{(R_1C_1 + 1)(R_2C_2 + 1)} \]
\[= \frac{R_1R_2C_1 + R_2C_2 + (R_1 + R_2)}{(R_1C_1 + 1)(R_2C_2 + 1)} \]

Then

\[\frac{Z_1 + Z_2}{Z_1} = \frac{R_1R_2(C_1 + C_2)s + (R_1 + R_2)}{(R_1C_1 + 1)(R_2C_2 + 1)} \]
\[= \frac{R_1R_2(C_1 + C_2)s + (R_1 + R_2)}{R_1(R_2C_2 + 1)} \]
\[= \left(\frac{(C_1 + C_2)}{C_2} \right) s + \frac{R_1 + R_2}{R_1R_2(C_1 + C_2)} \]
\[= \frac{1}{s + \frac{R_1R_2(C_1 + C_2)}{R_2C_2}} \]

We next have to choose some values. We note that we have

\[\frac{C_1 + C_2}{C_1} = 10 \]
\[
\frac{R_1 + R_2}{R_1R_2(C_1 + C_2)} = 0.1
\]

\[
\frac{1}{R_2C_2} = 0.01
\]

From the first equation we see that

\[C_1 = 9C_2.\]

Our choices are fairly limited. If we choose

\[C_1 = 100 \mu \text{f} \quad \text{and} \quad C_2 = 10 \mu \text{f}\]

we get a gain of 11, which is close to what we want.

Then if we choose

\[R_2 = 10 \text{ M} \Omega,\]

the pole will be at

\[-\frac{1}{10^7 \times 10^{-5}} = -0.01,\]

We can easily make a 10 M \Omega resistor from the values in Table 3.1, and modern JFET opamps can tolerate a resistor this big, since the offsets have become very small, particularly if we are willing to pay about a buck for a quad opamp.

If we now solve the second equation for \(R_1\) we obtain

\[
R_1 = \frac{R_2}{0.1R_2(C_1 + C_2) - 1}
\]

\[
= \frac{10^7}{0.1 \times 10^7 \times 1.1 \times 10^{-4} - 1}
\]

\[
= \frac{10^7}{109}
\]

\[
= 91.7 \text{ k} \Omega \to 91 \text{ k} \Omega.
\]

Then

\[G(s) = \frac{11(s + 0.1008)}{s + 0.01}\]

Given that we normally use 5% components, this compensator is very close to the desired one. The gain is 10% high but easily adjusted at the power amplifier that will of needs be present.
Solution 3.8.5.4

For the opamp circuit of Figure 3.27 we have

\[
\frac{V_o(s)}{V_i(s)} = \frac{-(C_1/C)[s^2 + [(1/C_1)(1/R_1 - R_2/R_5)]s + 1/RR_4C_1C}{s^2 + (1/R_2C)s + 1/R^2C^2}
\]

We begin with the denominator which should be

\[(s + 0.1)(s + 50) = s^2 + 50.1s + 5.\]

Note that we have two nonlinear equations in three unknowns, namely

\[
\begin{align*}
\frac{1}{R_2C} &= 50.1 \\
\frac{1}{R^2C^2} &= 5.
\end{align*}
\]

Squaring the first equation and dividing by the second we obtain:

\[
\left(\frac{R}{R_2}\right)^2 = \frac{50.1^2}{5} = 502.002,
\]

or

\[
\frac{R}{R_2} = 22.4.
\]

If we choose

\[R_2 = 12 \text{ k } \Omega,\]

then

\[R = 22.4054 \times 12 \text{ k } \Omega = 268.9 \text{ k } \Omega.\]

From the table we choose

\[R = 270 \text{ k } \Omega.\]

We now have to have

\[
\frac{1}{R_2C} = 50.1,
\]

or

\[
C = \frac{1}{50.1 \times R_2} = \frac{1}{50.1 \times 12 \times 10^3} = 1.66 \mu \text{ f}.
\]
We can come close to this value with the parallel combination of three 0.22 μf capacitors and a 1.0 μf capacitor. We next check the other coefficient of the denominator to see if it is correct.

\[
\frac{1}{R^2C^2} = \frac{1}{270^2 \times 10^{10} \times 1.666^2 \times 10^{-12}} = 4.958.
\]

Thus the denominator polynomial is

\[s^2 + 50.1s + 4.958 = (s + 50)(s + 0.0992).\]

and so the roots are very close to those we want.

We now turn our attention to the numerator and the gain. The gain is

\[K = 10 = \frac{C_1}{C}.
\]

We can come very close with a parallel combination of a 10, 4.7, and two 1 μf capacitors. Thus, assuming that

\[C_1 = 16.7 \mu f,
\]

we next consider the coefficients of the numerator of the transfer function which is

\[(s + 1)(s + 5) = s^2 + 6s + 5.
\]

We thus have the two equations

\[
\begin{align*}
\frac{1}{R_1 - R_3/RR_5} &= 6C_1 \\
\frac{1}{RR_4C_1} &= 5
\end{align*}
\]

From the second equation we see that

\[R_4 = \frac{1}{5RC_1} = \frac{1}{5 \times 270 \times 10^3 \times 1.66 \times 10^{-6} \times 16.7 \times 10^{-6}} = 26.67 \text{ kΩ}.
\]

This is quite close to the value 27 kΩ from the table. Then

\[\frac{1}{RR_4C_1} = 4.9383
\]

2
We now turn our attention to the last coefficient which is determined from the equation,

\[
\frac{1}{R_1} - \frac{R_3}{RR_5} = 6C_1,
\]
or

\[
\frac{1}{R_1} - \frac{R_3}{RR_5} = 0.0001002.
\]

If we choose

\[R_1 = 10 \text{ k } \Omega, \]

then all we have to do is make

\[\frac{R_3}{RR_5} \text{ very small.} \]

Suppose we choose

\[R_3 = 10 \text{ k } \Omega, \]

and

\[R_5 = 180 \text{ k } \Omega, \]

Then

\[
\frac{R_3}{RR_5} = \frac{10^4}{1.8 \times 10^5 \times 2.7 \times 10^5} = 2.05 \times 10^{-7}.
\]

Then the numerator polynomial is

\[s^2 + 4.99s + 4.9383 = (s + 0.9906)(s + 4.99). \]

Close enough, and we have been able to set all the coefficients of the numerator and denominator, as well as the gain.
Solution 3.8.7.1

In part (a) the output is

\[C = AG + B \]

In the block diagram of part (b) we have

\[C = (A + BX)G \]
\[= AG + BXG. \]

This says that

\[X = G^{-1}. \]

The way to think about is to note that in part (a) \(B \) does not go through \(G \). In part (b) it does so we have condition \(B \) by multiplying by the inverse of \(G \).
Solution 3.8.7.2

In part (a) the output is

\[C = A + AG \]

In the block diagram of part (b) we have

\[C = AGX \]

Equating the two expressions for \(C \) yields

\[AGX = A + AG, \]

which, when solved for \(X \) gives

\[X = 1 + G^{-1}. \]

Solution 3.8.7.3

In part (a) the output is

\[D = A + B - C \]

In the block diagram of part (b) we have

\[D = (A + B) - X \]

Thus,

\[X = C. \]

The point of this exercise is simply to show that we can separate a single summer into multiple summers and still have the same output.
In part (a) the output is

\[D = (A - B) + C \]
\[= A - B + C \]

In the block diagram of part (b) we have

\[D = (A + X) - Y. \]

There are lots of answers but the simplest one is to let

\[X = C \quad \text{and} \quad Y = B. \]

In other words, we can first add \(C \) to \(A \) and then subtract \(B \) and get the same result as first subtracting \(B \) from \(A \) and then adding \(C \).