Introduction

In your writeup, described the steps you completed for each problem and show the results. Readability will be part of your grade.

Do not use all two weeks to accomplish this assignment! The final will be released on Tuesday, November 23, 2010

1 Implement the Harris Corner Detector

As discussed in class, the Harris Corner Detector operates on the auto-correlation matrix, which can be described as

$$A = w \ast \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Using this matrix, the feature points, or good points to match are found by computing the value

$$H = det(A) - \alpha \text{trace}(A)^2$$

with If,

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

then, $det(A) = ac - b^2$ and $trace(A) = a + c$.

For this problem, use one of the provided images to find the best 20 points for matching using the points with the highest value of H. Note that to implement this, you need to

1. Compute the image derivatives
2. Compute images representing I_x^2, I_y^2, and $I_x I_y$.
3. Smooth each of these with a kernel, w.
4. Compute H

2 Matching

Next, we will experiment with matching. In one of the two images provided, we’ll call it Image 1, identify ten points that you will match – you can use your code from the previous problem or you can hand-identify points. Next, for each point, hand-identify the matching point in Image 2.

Now, create a descriptor(see below) for each of the twenty points in Image 1 and all points in Image 2. Using these descriptors, find the closest point in Image 2 that corresponds to image 1. What is the mean distance between the right answer and the chosen point?

You should try two different types of descriptors:
1. Just use a 5×5 patch of pixels.

2. Use a descriptor that is a collection of derivative response values, similar to the descriptor used in the midterm.