Recognition with Bag-of-Words

(Borrowing heavily from Tutorial Slides by Li Fei-fei)
Recognition

- So far, we’ve worked on recognizing edges
- Now, we’ll work on recognizing objects
- We will use a bag-of-words approach
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brain from our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain; the cerebral cortex was a movie screen, so to speak, upon which the image in the eye was projected. Through the discoveries of Hubel and Wiesel we now know that behind the origin of the visual perception in the brain there is a considerably more complicated course of events. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have been able to demonstrate that the message about the image falling on the retina undergoes a step-wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004’s $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with a 18% rise in imports to $660bn. The figures are likely to further annoy the US, which has long argued that China’s exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says the yuan is only one factor. Bank of China governor Zhou Xiaochuan said the country also needed to do more to boost domestic demand so more goods stayed within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. Moreover, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value.
A clarification: definition of “BoW”

- Looser definition
 - Independent features
A clarification: definition of “BoW”

• Looser definition
 – Independent features

• Stricter definition
 • Independent features
 • histogram representation
learning

feature detection & representation

image representation

codewords dictionary

category models (and/or) classifiers

recognition

category decision
1. feature detection & representation

2. codewords dictionary

3. image representation
1. Feature detection and representation
1. Feature detection and representation

Regular grid
Vogel & Schiele, 2003
Fei-Fei & Perona, 2005
1. Feature detection and representation

Regular grid
Vogel & Schiele, 2003
Fei-Fei & Perona, 2005

Interest point detector
Csurka, et al. 2004
Fei-Fei & Perona, 2005
Sivic, et al. 2005
1. Feature detection and representation

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

- Interest point detector
 - Csurka, Bray, Dance & Fan, 2004
 - Fei-Fei & Perona, 2005
 - Sivic, Russell, Efros, Freeman & Zisserman, 2005

- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation based patches (Barnard, Duygulu, Forsyth, de Freitas, Blei, Jordan, 2003)
1. Feature detection and representation

Compute SIFT descriptor

[Lowe'99]

Normalize patch

Detect patches

[Mikojaczyk and Schmid '02]
[Mata, Chum, Urban & Pajdla, '02]
[Sivic & Zisserman, '03]
1. Feature detection and representation
2. Codewords dictionary formation
2. Codewords dictionary formation

Slide credit: Josef Sivic
2. Codewords dictionary formation

Fei-Fei et al. 2005
Image patch examples of codewords

Sivic et al. 2005
3. Image representation

Overview of our Method

- Extract Words
- Insert Words into Document Frequency Matrix
- Hierarchical Model
- Vocabulary Words
- Documents

frequency

codewords
1. feature detection & representation
2. codewords dictionary
3.
One of the keys to success is a good representation of features

- Just pixels is a bad representation
- Pixel intensities are affected by a lot of different things
 - Rotation, scaling, perspective
 - Illumination changes
 - Reordering of scenes
- We want a good way of characterizing image patches that is somewhat robust to these different effects
Scale-Invariant Local Features

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters.
Advantages of invariant local features

- **Locality**: features are local, so robust to occlusion and clutter (no prior segmentation)
- **Distinctiveness**: individual features can be matched to a large database of objects
- **Quantity**: many features can be generated for even small objects
- **Efficiency**: close to real-time performance
- **Extensibility**: can easily be extended to wide range of differing feature types, with each adding robustness

(slide from Lowe)
Think Back to Bag of Words - Two Key Problems

- Problem 1: What parts of the image do I look at?
- Problem 2: How do I represent the patches of pixels
Build Scale-Space Pyramid

- All scales must be examined to identify scale-invariant features
- An efficient function is to compute the Difference of Gaussian (DOG) pyramid (Burt & Adelson, 1983)
Scale space processed one octave at a time...

- Scale (next octave)
- Scale (first octave)
- Gaussian
- Difference of Gaussian (DOG)

(slide from Lowe)
Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space

(slide from Lowe)
Sampling frequency for scale

More points are found as sampling frequency increases, but accuracy of matching decreases after 3 scales/octave.

(slide from Lowe)
Select canonical orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)
Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures

(slide from Lowe)
Detecting Keypoints is not always better

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11 × 11 Pixel</td>
<td>64.0%</td>
<td>47.5%</td>
<td>45.5%</td>
<td>N/A</td>
</tr>
<tr>
<td>128-dim Sift</td>
<td>65.2%</td>
<td>60.7%</td>
<td>53.1%</td>
<td>52.5%</td>
</tr>
</tbody>
</table>

(From L. Fei-Fei and Perona)
SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions

(slide from Lowe)
Feature stability to noise

- Match features after random change in image scale & orientation, with differing levels of image noise
- Find nearest neighbor in database of 30,000 features

![Graph showing feature stability to noise](slide from Lowe)
Feature stability to affine change

- Match features after random change in image scale & orientation, with 2% image noise, and affine distortion
- Find nearest neighbor in database of 30,000 features

(slide from Lowe)
Distinctiveness of features

- Vary size of database of features, with 30 degree affine change, 2% image noise
- Measure % correct for single nearest neighbor match

(slid from Lowe)
Sony Aibo
(Evolution Robotics)

SIFT usage:

- Recognize charging station
- Communicate with visual cards
SIFT is just the beginning

- Authors have proposed more feature point detectors
 - Harris-Laplace,....
- Authors have proposed other feature descriptors
 - ColorSIFT
 - SURF
- The Koen executable implements many of this
Learning and Recognition

codewords dictionary

category models (and/or) classifiers

category decision
Learning and Recognition

1. Generative method:
 - graphical models

1. Discriminative method:
 - SVM

category models (and/or) classifiers
Learning and Recognition

1. Generative method:
 - graphical models

1. Discriminative method:
 - SVM
Discriminative methods based on ‘bag of words’ representation
Discriminative methods based on ‘bag of words’ representation

Grauman & Darrell, 2005, 2006: SVM w/ Pyramid Match kernels

Others

Csurka, Bray, Dance & Fan, 2004

Serre & Poggio, 2005
learning

feature detection & representation

image representation

codewords dictionary

category models (and/or) classifiers

category decision

recognition
What about spatial info?
What about spatial info?

Feature level

Generative models

Discriminative methods

Lazebnik, Schmid & Ponce, 2006
Invariance issues

• Scale and rotation
 • Implicit
 • Detectors and descriptors

Kadir and Brady. 2003
Invariance issues

• Scale and rotation

• Occlusion
 • Implicit in the models
 • Codeword distribution: small variations
 • (In theory) Theme (z) distribution: different occlusion patterns
Invariance issues

• Scale and rotation
• Occlusion
• Translation
 • Encode (relative) location information
 – Sudderth, Torralba, Freeman & Willsky, 2005, 2006
 – Niebles & Fei-Fei, 2007
Invariance issues

- Scale and rotation
- Occlusion
- Translation
- View point (in theory)
 - Codewords: detector and descriptor
 - Theme distributions: different view points

Fergus, Fei-Fei, Perona & Zisserman, 2005
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brain from our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain; the cerebral cortex was a movie screen, so to speak, upon which the image fell. However, through the discoveries of Hubel and Wiesel we now know that the origin of visual perception in the brain is considerably more complicated. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have demonstrated that the message about the image falling on the retina undergoes a step-wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.
Model properties

- Intuitive
 - Analogy to documents
 - Analogy to human vision

Olshausen and Field, 2004, Fei-Fei and Perona, 2005
Model properties

- Intuitive
- generative models
 - Convenient for weakly- or unsupervised, incremental training
 - Prior information
 - Flexibility (e.g. HDP)

Li, Wang & Fei-Fei, CVPR 2007
Model properties

- Intuitive
- Generative models
- Discriminative method
 - Computationally efficient

Grauman et al. CVPR 2005
Model properties

- Intuitive
- Generative models
- Discriminative method
- Learning and recognition relatively fast
 - Compare to other methods
Weakness of the model

- No rigorous geometric information of the object components
- It’s intuitive to most of us that objects are made of parts – no such information
- Not extensively tested yet for
 - View point invariance
 - Scale invariance
- Segmentation and localization unclear