1. Consider two sets of FDs \(F = \{ A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H \} \) and \(G = \{ A \rightarrow CD, E \rightarrow AH \} \)
 a. (25 pts.) Apply Armstrong axioms to prove that \(F \) implies \(G \)
 b. (25 pts.) Compute attribute closures with respect to \(G \) to show that \(G \) implies \(F \)
 (Thus, \(F \) and \(G \) are equivalent)

2. (25 pts.) Consider relation \(R(A, B, C, D, E) \) with FDs \(AB \rightarrow C, A \rightarrow D, D \rightarrow E, AC \rightarrow B \). Compute \(\{A, B\}^+ \) and \(\{A, C\}^+ \). What can we conclude from \(\{A, B\}^+ \) and \(\{A, C\}^+ \)?

3. (25 pts.) Consider the relation \(R(A, B, C, D) \) with the following set of functional dependencies:
 \[\{ A \rightarrow B, BC \rightarrow D, A \rightarrow C \} \]
 a. Identify the candidate key(s)
 b. Is \(R \) in 3NF?
 c. Decompose \(R \) into BCNF relations that preserve the dependencies