Neural Networks

CAP6676 Knowledge Representation
Instructor: Guo-Jun Qi
Recap: linear classifiers

• Logistic regression
 • Maximizing the posterior distribution of class Y conditional on the input vector X

• Support vector machines
 • Maximizing the maximum margin, and
 • Hard margin: subject to the constraints that no training error shall be made
 • Soft margin: minimizing the slack variables that represent how much an associated training example violates the classification rule.
 • Extended to nonlinear classifier with kernel trick
 • Mapping input vectors to high dimensional space
 • linear classifier in high dimensional space, nonlinear in original space.
Building nonlinear classifier

- With a network of logistic units?
- A single logistic unit is linear classifier: $f: X \rightarrow Y$

$$f(X) = \frac{1}{1 + \exp(-W_0 - \sum_{n=1}^{N} W_n X_n)}$$
Graph representation of a logistic unit

- Input layer: An input $X=(X_1, \ldots, X_n)$
- Output: logistic function of the input features
A logistic unit as a neuron:

- Input layer: An input \(X = (X_1, \ldots, X_n) \)
- Activation: weighted sum of input features \(a = W_0 + \sum_{n=1}^{N} W_n X_n \)
- Activation function: logistic function \(h \) applied to the weighted sum
- Output: \(z = h(a) \)
Neural Network: Multiple layers of neurons

- Output of a layer is the input into the upper layer
An example

• A three layer neural network

\[
\begin{align*}
 a_1^{(1)} &= w_{11}^{(1)} x_1 + w_{12}^{(1)} x_2 + w_{10}^{(1)} \\
 z_1 &= h(a_1^{(1)}) \\
 a_2^{(1)} &= w_{21}^{(1)} x_1 + w_{22}^{(1)} x_2 + w_{20}^{(1)} \\
 z_2 &= h(a_2^{(1)}) \\
 a_1^{(2)} &= w_{11}^{(2)} z_1 + w_{12}^{(2)} x_2 + w_{10}^{(2)} \\
 y_1 &= f(a_1^{(2)})
\end{align*}
\]
XOR Problem

• It is impossible to linearly separate these two classes
XOR Problem

- Two classes become separable by putting a threshold 0.5 to the output y_1

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>0.057</td>
</tr>
<tr>
<td>(1,0)</td>
<td>0.949</td>
</tr>
<tr>
<td>(0,1)</td>
<td>0.946</td>
</tr>
<tr>
<td>(1,1)</td>
<td>0.052</td>
</tr>
</tbody>
</table>
Application: Drive a car

- Input: real-time videos captured by a camera
- Output: signals that steer a car
 - From the sharp left, straight to sharp right
Training Neural Network

• Given a training set of M examples $\{(x^{(i)}, t^{(i)}) | i=1, ..., M\}$

• Training neural network is equivalent to minimizing the least square error between the network output and the true value

$$
\min_w L(w) = \frac{1}{2} \sum_{i=1}^{M} (y^{(i)} - t^{(i)})^2
$$

Where $y^{(i)}$ is the output depending on the network parameters w.
Recap: Gradient decent Method

• Gradient descent method is an iterative algorithm
 • hill climbing method to find the peak point of a “mountain”
 • At each point, compute its gradient

\[\nabla L = \left[\frac{\partial L}{\partial w_0}, \frac{\partial L}{\partial w_1}, \ldots, \frac{\partial L}{\partial w_N} \right] \]

• Gradient is a vector that points to the steepest direction climbing up the mountain.
• At each point, w is updated so it moves a size of step \(\lambda \) in the gradient direction

\[w \leftarrow w + \lambda \nabla L(w) \]
Stochastic Gradient Ascent Method

• Making the learning algorithm scalable to big data
• Computing the gradient of square error for only one example

\[L(w) = \sum_{i=1}^{M} (y^{(i)} - t^{(i)})^2 \]

\[\nabla L = \left[\frac{\partial L}{\partial w_0}, \frac{\partial L}{\partial w_1}, \ldots, \frac{\partial L}{\partial w_N} \right] \]

\[L^{(i)}(w) = (y^{(i)} - t^{(i)})^2 \]

\[\nabla L^{(i)} = \left[\frac{\partial L^{(i)}}{\partial w_0}, \frac{\partial L^{(i)}}{\partial w_1}, \ldots, \frac{\partial L^{(i)}}{\partial w_N} \right] \]
Boiling down to calculation of the gradient

Square loss: \[L = \frac{1}{2} (y_k - t_k)^2 \]

\[y_k = f(a_k), a_k^{(2)} = \sum_j w_{kj}^{(2)} z_j \]

Derivative to the activation in the second layer:

\[\delta_k^{(2)} \triangleq \frac{\partial L}{\partial a_k^{(2)}} = (y_k - t_k) \frac{\partial y_k}{\partial a_k^{(2)}} = (y_k - t_k) f'(a_k^{(2)}) \]

Derivative to the parameter in the second layer:

\[\frac{\partial L}{\partial w_{ki}^{(2)}} = \frac{\partial L}{\partial a_k^{(2)}} \frac{\partial a_k^{(2)}}{\partial w_{ki}^{(2)}} = \delta_k^{(2)} z_i \]
Boiling down to computing the gradient

- Computing the derivatives to the parameters in the first layer

Relation between activations of the first and second layers

\[
a^{(2)}_k = \sum_j w^{(2)}_{kj} h(a^{(1)}_j)
\]

By chain rule:

\[
\frac{\partial L}{\partial a^{(1)}_j} = \sum_k \frac{\partial L}{\partial a^{(2)}_k} \frac{\partial a^{(2)}_k}{\partial a^{(1)}_j}
\]

\[
= h'(a^{(1)}_j) \sum_k \delta^{(2)}_k w^{(2)}_{kj} \triangleq \delta^{(1)}_j
\]

The derivative to the parameter in the first layer:

\[
a^{(1)}_j = \sum_n w^{(1)}_{jn} x_n \quad \frac{\partial L}{\partial w^{(1)}_{jn}} = \frac{\partial L}{\partial a^{(1)}_j} \frac{\partial a^{(1)}_j}{\partial w^{(1)}_{jn}} = \delta^{(1)}_j x_n
\]
Summary: Back propagation

• For each training example \((x, y)\),

 • For each output unit \(k\)
 \[
 \delta_k^{(2)} = (y_k - t_k) \cdot f'(a_k^{(2)})
 \]

 • For each hidden unit \(j\)
 \[
 \delta_j^{(1)} = h'(a_j^{(1)}) \sum_k \delta_k^{(2)} w_{kj}^{(2)}
 \]
Summary: Back propagation (2)

• For each training example \((x, y)\),

 • For each weight \(w_{ki}^{(2)}\):
 \[
 \frac{\partial L}{\partial w_{ki}^{(2)}} = \delta_{k}^{(2)} z_i
 \]
 • Update
 \[
 w_{ki}^{(2)} \leftarrow w_{ki}^{(2)} - \alpha \delta_{k}^{(2)} z_i
 \]

 • For each weight \(w_{jn}^{(1)}\):
 \[
 \frac{\partial L}{\partial w_{jn}^{(1)}} = \delta_{j}^{(1)} x_n
 \]
 • Update
 \[
 w_{jn}^{(1)} \leftarrow w_{jn}^{(1)} - \alpha \delta_{j}^{(1)} x_n
 \]

Note: \(\alpha > 0\) is a learning rate which specifies the step size for each weight update.
Regularized Square Error

• Add a zero mean Gaussian prior on the weights $w_{ij}^{(l)} \sim N(0, \sigma^2)$

• MAP estimate of w

$$L^{(i)}(w) = \frac{1}{2} (y^{(i)} - t^{(i)})^2 + \frac{\gamma}{2} \sum (w_{ij}^{(l)})^2$$
Summary: Back propagation (2)

• For each training example \((x, y)\),

 • For each weight \(w_{ki}^{(2)}\):
 \[
 \frac{\partial L}{\partial w_{ki}^{(2)}} = \delta_{k}^{(2)} z_{i} + \gamma w_{ki}^{(2)}
 \]

 • Update
 \[
 w_{ki}^{(2)} \leftarrow w_{ki}^{(2)} - \delta_{k}^{(2)} z_{i} - \gamma w_{ki}^{(2)}
 \]

 • For each weight \(w_{jn}^{(1)}\):
 \[
 \frac{\partial L}{\partial w_{jn}^{(1)}} = \delta_{j}^{(1)} x_{n} + \gamma w_{jn}^{(1)}
 \]

 • Update
 \[
 w_{jn}^{(1)} \leftarrow w_{jn}^{(1)} - \delta_{j}^{(1)} x_{n} - \gamma w_{jn}^{(1)}
 \]
Multiple outputs encoding multiple classes

• MNIST: ten classes of digits

• Encoding multiple classes as multiple outputs:
 • An output variable is set to 1 if the corresponding class is positive for the example
 • Otherwise, the output is set to 0.

• The posterior probability of an example belonging to class k

\[
P(\text{Class}_k|\mathbf{x}) = \frac{y_k}{\sum_{k'=1}^{K} y_{k'}}
\]
Overfitting

• Tuning the number of update iterations on validation set
How expressive is NN?

• Boolean functions:
 • Every Boolean function can be represented by network with single hidden layer
 • But might require exponential number of hidden units

• Continuous functions:
 • Every bounded continuous function can be approximated with arbitrarily small error by neural network with one hidden layer
 • Any function can be approximated to arbitrary accuracy by a network with two hidden layers
Learning feature representation by neural networks

• A compact representation for high dimensional input vectors
 • A large image with thousands of pixels
 • High dimensional input vectors
 • might cause curse of dimensionality
 • Needs more examples for training (in lecture 1)
 • Not well capture the intrinsic variations
 • an arbitrary point in a high dimensional space probably does not represent a valid real object.
 • A meaningful low dimensional space is preferred!
Autoencoder

• Set output to input
• Hidden layers as feature representation, since it contains sufficient information to reconstruct the input in the output layer
An example

<table>
<thead>
<tr>
<th>Input</th>
<th>Hidden</th>
<th>Output Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>.89</td>
<td>.04 .08 → 10000000</td>
</tr>
<tr>
<td>01000000</td>
<td>.01</td>
<td>.11 .88 → 01000000</td>
</tr>
<tr>
<td>00100000</td>
<td>.01</td>
<td>.97 .27 → 00100000</td>
</tr>
<tr>
<td>00010000</td>
<td>.99</td>
<td>.97 .71 → 00010000</td>
</tr>
<tr>
<td>00001000</td>
<td>.03</td>
<td>.05 .02 → 00001000</td>
</tr>
<tr>
<td>00000100</td>
<td>.22</td>
<td>.99 .99 → 00000100</td>
</tr>
<tr>
<td>00000010</td>
<td>.80</td>
<td>.01 .98 → 00000010</td>
</tr>
<tr>
<td>00000001</td>
<td>.60</td>
<td>.94 .01 → 00000001</td>
</tr>
</tbody>
</table>

Sum of squared errors for each output unit.
Deep Learning: A Deep Feature Representation

• If you build multiple layers to reconstruct the input at the output layer
Summary

• Neural Networks: Multiple layers of neurons
 • Each upper layer neuron encodes weighted sum of inputs from the other neurons at a lower layer by an activation function

• BP training: a stochastic gradient descent method
 • From the output layer down to the hidden and input layers

• AutoEncoder: feature representation