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ABSTRACT 

The diverse behavior representation schemes and learning 
paradigms being investigated within the robotics community 
share the common feature that successful deployment of agents 
requires that behaviors developed in a learning environment are 
successfully applied to a range of unfamiliar and potentially 
more complex operational environments. The intent of our 
research is to develop insight into the factors facilitating 
successful transfer of behaviors to the operational 
environments. We present experimental results investigating 
the effects of several factors for a simulated swarm of 
autonomous vehicles. Our primary focus is on the impact of 
Synthetic Social Structures, which are guidelines directing the 
interactions between agents, much like social behaviors direct 
interactions between group members in the human and animal 
world. The social structure implemented is a dominance 
hierarchy, which has been shown previously to facilitate 
negotiation between agents. The goal of this investigation is to 
investigate mechanisms adding robustness to agent behavior.  
 
 

 
INTRODUCTION 

Various approaches to producing intelligent and 
cooperative behavior among agents have demonstrated progress 
in narrowly restricted domains.  No single approach has yet to 
emerge integrating ease of development coupled with robust 
and adaptable behaviors allowing agents to succeed in new 
environments.  This is important as a unifying trait among the 
majority of systems aiming to produce intelligent behaviors is 

that the learning occurs in a training environment which is 
expected to produce behaviors applicable to an operational 
environment.  We report results of experiments designed to 
identify factors that assist in preserving successful behaviors in 
new environments.   These experiments are part of a larger 
research program into the role of Synthetic Social Structures in 
the development and use of multi-agent (swarm) behaviors, and 
as such represent intermediary results.  

 
Our work extends work performed at NRL and later SAIC, 

that explored the evolution of rule sets to control the behavior 
of individual Autonomous Vehicles (AV) operating in a team. 
In the previous work, Genetic Algorithm (GA) techniques were 
used to develop simple reactive behaviors for the AVs, though 
this was not required for this study.  The paradigm of synthetic 
social structures (SSS) was coupled with the GA techniques to 
investigate the effect of the solution computation in terms of 
time to achieve an effective solution, and fitness of the solution.   

 
The agents in this work are non-point simulated 

Autonomous Vehicles (AV) operating in a flat-world 
environment.  The AV’s are reactive agents, having behaviors 
generated in step-wise fashion in response to the immediate 
environment.  Each AV behavior generator allows for 
resolution of multiple goals, such as avoiding collision with 
other AVs while searching and surveilling targets in the 
environment. In addition to the reactive behavior rules, a 
synthetic social structure is imposed upon the AV swarm.  The 
synthetic social rules constitute a static dominance hierarchy, 
which affect AV behavior by requiring that AV's separate from 
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more dominant neighboring AV's.  This acts as a scattering 

mechanism in open terrain, and resolves positioning disputes in 
restricted terrain. 

 
Three series of experiments were conducted in the 

simulated 2-dimensional environment.  The experiments 
consisted of variations on the Opera Problem, which require 
that members of a group cooperate to negotiate a restricted 
passageway while moving between rooms.  The Opera Problem 
can easily be shown to extend to the more general problem of 
swarm navigation in terrain with obstacles. The focus of the 
experiments was not pure performance, nor learning to achieve 
some level of capability, but maintaining capability observed in 
the simplest environment across more complex environments.   

NOMENCLATURE 
AV  Autonomous Vehicle 
GA  Genetic Algorithm 
PDF Probability Distribution Field 
SSS  Synthetic Social Structure 
 

BACKGROUND 
This section provides brief background information on 

multi-agent systems, learning and adaptation, and synthetic 
social structures. 
 
Multi-Agent Systems 
     Multi-agent systems are those that employ multiple 
software/hardware agents working communally on a single 

mission or problem.  Agents can be characterized by degree of 

autonomy, individual behavioral preferences, degree of global 
information available to them, degree of inter-agent 
communication [1].  In addition, agents may be classified as  
 
cognitive or reactive.    Cognitive agents deliberately develop 
solutions through reasoning about world state, whiles reactive 
agents produce emergent solutions at the system level with no 
individual agent demonstrating high level cognizance or 
capability. [1].  Multi-agent systems are being researched due 
to attractive properties of distributed control, (relatively) robust 
behaviors , and scaling of behaviors with respect to agent 
population [1, 2, 3].   
 
Learning Paradigms and Adaptation 
     Numerous learning paradigms have been proposed in the 
study of intelligent agents.  Among the most popular pertaining 
to the fields of robotics and multi-agent systems are neural 
networks and genetic algorithms. 
 
     The Neural Network (NN) paradigm coarsely mimics the 
biology of the brain, with one or more layers of formal neurons 
connected by synapse [3].  In a multi-layer system, one layer is 
typically the receiver of inputs, traditionally termed the 
perceptor layer, and one layer outputs the result, often labeled 
the execution layer [1].  Each synapse sends a weighted signal 
as output to the next layer or output (execution) discriminator.  
Neural networks learn through a series of training cases during 

Opera Problem 
Doorway 

Opera Problem
Hallway 

Opera Problem 
Zigzag 

Figure 1:  Opera Problem Scenarios
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which synaptic weights and firing thresholds are adjusted until 
some threshold of acceptable performance is attained    
 
The Genetic Algorithm (GA) learning paradigm is a 
biologically inspired system in which potential solutions are 
formatted as genetic material, and acceptable solutions are 
evolved through a selection process involving multiple 
generations.  A typical GA begins with a randomly generated 
population, each representing a potential solution to the 
problem being studied.  These potential solutions are evaluated 
and those judged most fit form the basis of a new population of 
solutions, which is generated using genetically inspired 
operators.   
 
The GA paradigm is currently enjoying application in many 
diverse problem domains.  Key features common to the GA 
paradigm are a population of individuals representing potential 
solutions to a problem.  The potential solutions are represented 
as genetic material, typically a binary string.  A user defined 
fitness function evaluates the degree to which each individual 
succeeds in the problem domain.  A selection function then 
selects individuals for reproduction to produce the next 
generation.  Idealized genetic operators, such as crossover and 
mutation, combine and modify the parent genetic material to 
produce offspring representing new candidate solutions.  The 
process is considered to be computationally expensive, and 
solutions are typically harvested either when a specified degree 
of proficiency is achieved or the rate of increase of solution 
effectiveness falls below a certain threshold.  
 
Adaptation 
     One commonality among learning systems is the need to 
train the agent in a learning environment and transfer the 
learned behaviors to an operational environment.  Neural nets, 
which have no intrinsic introspective capability, are noted for 
being “brittle” in this sense.  For example, Xu, et. al. 
anticipated this effect for a neural network navigational system 
and incorporated six separate neural nets, each dedicated to a 
separate range of sensed parameters, in an attempt to broaden 
the range of the overall expertise of the navigational system [4].   
 
     Other systems acknowledge the difficulty of applying 
learning to an operational environment simply by allowing the 
agent to continue learning in the operational environment.  
While this approach is suitable for some applications (i.e. Via 
Voice’s capability to tune itself to a single user over time), the 
prospect of unstructured learning is daunting.  In addition, 
negative learning may occur and is not acceptable in safety-
critical systems.   
 
Synthetic Social Structures 

Social rules play an integral role in determining the 
behavior of individual biological organisms.  When two or 
more individuals attempt to operate successfully within the 
same physical space, they must take into account not just the 
inanimate environment, but the actions of the other 
individual(s).  When two or more biological individuals 
repeatedly operate in the same space, social rules develop 
naturally. There are countless examples of biological social 
rules, though the computer science community has traditionally 
focused on only a few. Insect communities (ants and bees) have 

provided models for agents demonstrating team behavior 
through the interaction of relatively simple individual rules 
[2,3]. The emergent aggregate behavior is more complex than 
the simple rules directing individual actions, and does not 
require explicit control structures.  More complex social 
animals have provided models for dynamically self-organizing 
teams of agents that exhibit more complex individual reasoning 
and behaviors [5].  An attractive social structure for this study 
is the dominance hierarchy, which provides an explicit 
mechanism to dynamically self-organize teams [5]. 

 
Social rules are though to provide benefits in a variety of 

ways [2,3,5]:  
Resource Management:  Social rules may be useful in resolving  
conflicts in which two agents compete over limited resources.  
In the case of dominance hierarchies, the more dominant agent 
receives priority in acquiring  the resource. 

 
Explanation of Behavior:  Social rules may be helpful in 
allowing humans to understand or predict agent behavior, both 
intuitively and formally.  Humans intuitively understand social 
structures found in nature, and when observing an agent are 
known to ascribe anthropomorphic qualities to the agent even if 
the agent is not intentionally mimicking biological behaviors.  
These two human qualities, an intuitive understanding and a 
tendency to anthropomorphize, imply that agent behavior 
purposefully mimicking biological social behaviors and 
structures will be more readily understood by humans   
operating the agents.  More formally, intentionally designed 
behaviors embedded in a SSS may assist human designers of 
agents to predict productive behavior, and explicitly prohibit 
behavior injurious to the agent, human, or mission. 
 
Team Roles: Social rules may be useful as a way of 
determining roles of agents within a multi-agent system, and 
for allowing dynamic re-assignment of roles within an ongoing 
mission. 

 
Team Cognition: Team cognition represents a level of 
knowledge regarding the state of the team that is not entirely 
captured at the individual level.  Social rules may be useful for 
achieving team cognition as each team members can compare 
the team state observable to them against known 'customs' or 
standards. 
 
Efficiency: Social structures provide a major benefit in terms   
of efficiency in biological systems, and are expected to do the 
same for synthetic agents.  Many systems resolve agent-agent 
conflicts inefficiently.  Typically, negotiations between agents 
are performed at the time a conflict arises via explicit 
interactions.  Negotiations are repeated between the same 
agents when similar situations are repeated, even though the 
outcome is not likely to differ from previous interactions.  The 
existence of synthetic social structures allows for agents to self-
organize with a minimal amount of explicit interaction.  Agents 
can maintain a history of social interactions with other 
individuals so that future un-necessary negotiations with the 
same individuals are not repeated in future encounters. 

 
Failure Tolerance: Social rules represent a layer of behavioral 
control on top of rules possibly developed using evolutionary 
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techniques.  This multi-layer nature of behavior representation 
may allow for graceful failure in the event of system 
degradation.  Higher level social behaviors may become 
inoperative due to system failure, but the lower level evolved 
individual behaviors may prevent complete loss of capability. 

 
 
 
Learning and Transfer of Behavior 

The behaviors were designed, as opposed to learned.  This 
is acceptable as the purpose of the experiments is to investigate 
factors that assist the transition of learned or designed 
behaviors from the learning/testing environment to the 
operational environment.  
 

 
EXPERIMENT SETUP 
The experiments were performed as a series of simulations 
using the MASON simulation systems developed at George 
Mason University [6].  Each simulation implemented a 
variation of the Opera Problem, in which a group of agents 
must cooperate to negotiate a passageway separating two 
rooms.  Three basic scenarios were investigated, as depicted in 
Figure 1.  The Doorway scenario represents the baseline 
scenario, and depicts two room separated by a simple doorway.  
The Hallway scenario extends the doorway into a long hallway.  
The Zigzag scenario requires that the AV’s negotiate a bend in 
the hallway.  These scenarios were intended to be incrementally 
more difficult for the AVs to negotiate in minor increments, the 
concept being that large environmental changes that would not 
allow any behaviors to transfer would yield trivial results.   
Three sets of experiments were performed, one investigating 
several parameters and one investigating the effect of social 
features more fully.   
 
The remainder of this section describes the simulated AV 
capabilities and behavior engine, the implemented Dominance 
Hierarchy synthetic social structure, experimental metrics and 
parameters explored, and details of the MASON simulation 
system.  
 
 
 
AV Capabilities and Behavior Engine  

The AV�s are represented in the simulation as 
independently operating reactive agents.  Since individual and 
inter-agent behavior is the focus of the study, the detailed 
mechanical and sensing operation of the AVs were not 
explicitly represented.  AVs have sensing capabilities to detect 
obstacles, other AV�s and potentially other types of vehicles in 
the scenario.  The sensors operate in a 360 degree field of view 
and a limited range.  The AVs represent ground vehicles, and 
therefore can stop and are presumed to survive collisions with 
other AV�s and obstacles (Note: the first series of experiments 
presumed the AV destroyed upon collision, slightly modifying 
success criteria). 

Each AV attempts to satisfy a set of prioritized goals such 
that, while individual actions have a degree of uncertainty to 
them, a sequence of actions will tend to satisfy a large number 
of highest priority goals.  This is achieved through the use of 
multiple Probability Distribution Fields (PDF).  The use of 

PDF’s to direct AV movement allows multiple goals to be 
addressed at each time step without reliance upon the complex 
logic structures often used to guide mission level behaviors.  A 
PDF is basically an oval sliced into many pie-slice regions, 
with the probability that the AV will move into a specific 
region represented graphically by the radius of the region 
centerline.   

 
The role of the PDF in goal resolution works as follows.  

Each PDF is associated with a single, distinct goal, such as 
moving to a point or avoiding collision.  The default PDF is 
circular, with the AV has an equally likely chance of moving in 
any direction (we call this wandering behavior).  Each goal 
corresponds to a distinct PDF shape with elongations 
representing higher probabilities, and contractions representing 
lower probabilities.  For example, if required to move to a 
certain point in the field of play, the PDF will be elongated 
towards the point, making it more likely that the AV will move 
in that direction at each time step.  PDF regions may also be 
completely restricted; such as when imminent collision must be 
avoided at all costs.   
 
The individual PDF’s are overlaid and merged to form a single 
set of probabilities for movement in a given time step.  The AV 
is generally capable of moving into any region at any time step, 
but is more likely to move toward those that will satisfy AV 
goals.  The result of many time step incremental movements 
will tend towards achieving AV goals.  This system accounts 
for potentially conflicting AV goals in AV movement without 
complex cognitive reasoning functions.  A weighting system is 
employed when combining multiple PDFs, effectively 
prioritizing the goal associated with each PDF.  Weights may 
change as a function of time or other measurable parameter, to 
allow a variation in goal priorities over time.  Thus, a PDF 
shaped to avoid an obstacle should have little weight while the 
obstacle is far away, but should gain prominence in the 
averaging process as the AV approaches the object.  

 
Environment 
The Opera Problem scenarios were investigated as a step in the 
overall development of the simulation and AV capabilities and 
characteristics.  Opera Problem scenarios require that agents act 
cooperatively to pass through a doorway as if leaving a 
crowded theater (opera house).  We have performed several 
sequences of Opera problem scenarios as part of the 
development of fuller AV capabilities.  Three basic room 
configurations (terrains) were investigated, as shown in Fig. 1.    
The original Opera Problem involves two rooms connected by a 
single doorway, while the Opera Hall Problem has two rooms 
connected by a straight long hallway, and the Opera Zigzag 
Problem has two rooms connected by a zigzag hallway.  The 
incorporation of small, incremental changes to the environment 
was designed to allow some opportunity for behaviors to 
transfer.  The use of radically different environments was 
discarded as not likely to identify factors assisting in 
transferring results.  

Dominance hierarchies were the Synthetic Social Structure of 
choice for these scenarios.  This SSS has been shown in 
previous work to act as a scattering mechanism, and is believed 
to be efficient in resource allocation (ref Tomlinson).  The 
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resource in this case being access to the opening separating the 
two rooms.  Typical multi-agent resource allocation systems are 
market or auction based, such as that presented by Goldberg 
[6].  Dominance hierarchies do not require duplicate 
negotiations when the outcome can be predetermined from past 
history [5].  

The simulation environment consisted of a 2-dimensional 
field, separated into two areas by a barrier and connected 
through an opening.  The configuration of the opening is 
dependent on the version of the problem being studied.  The 
doorway is the simplest environment, and acts as the learning 
environment, or basis for the remainder of the experiment.  
AVs are not able to traverse off the playing field, but the edge 
of the field is not treated as an obstacle in the same sense as the 
barrier between rooms.  AVs encountering the edge of the 
playing field simply bounce back upon collision. 

 
Metrics/conditions/parameters 
Three series of experiments were conducted.  The first two 
series of experiments varied parameters with the goal of 
identifying those that most affected the capability to maintain 
swarm performance across the various terrains.  In the first 
experiment, selected parameters were population size, opening 
width, sensor range, and the presence of social rules were 
investigated.  As a result of the first experiment it became clear 
that population size was not a factor in any of our scenarios.  In 
the second, selected parameters investigated were opening 
width, sensor range, and the presence of social rules.  Because 
of the reduction in parameters reducing the number of total 
runs, each parameter combination was conducted 5 times and 
averaged. 

The third series of experiments more fully investigated the 
effect of dominance hierarchies on the ability of the AV swarm 
to navigate the Hall and Zigzag configuration. The first two 
series indicated that the dominance SSS was a factor in 
improving swarm performance, but the effect was not 
consistent across environments.  This sequence was performed 
to determine how the dominance SSS affected performance, 
and to determine if any variations of the SSS consistently 
improved performance across terrains.  The specific cases for 
each series of experiments are summarized in Figure 2.  

 

Mason 
MASON is a discrete-event simulation system written in Java 
and deliberately designed to be compatible with the study of 
multi-agent (or swarm) behaviors.  The system is open source, 
free, and available from George Mason University’s Center for 
Social Complexity [7].  The choice of MASON for these 
experiments was due to program history and the ability to 
modify the source code to implement AV behaviors and 
simulation field terrain efficiently.  A screen shot of the AV 
experiments implemented within MASON is shown in Fig. 3 
 

 
RESULTS 
Experimental results are summarized in this section.  We stress 
that the purpose of the experiments was not to elicit the highest 
performance from the swarm, but to attempt to identify factors 
that allow successful behaviors and strategy in one environment 
to be successfully transferred to another environment.  As such 
we are interested in consistency across environments more than 
success in any single environment. 

Figure 2:  Experiment Parameters 

Experiment 1 & 2 
Parameters 

 
� Population (Exp 1 only) 
� Sensor Range  
� Opening Width  
� Social Structure  
 

Experiment 3 Cases 
 
� No Social Structure 
� All Dominance Value

Unique 
� One Dominant AV 
� Two dominant AVs 

Figure 3: The MASON Simulation 
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Experiment 1 Results Summary
(Percent AV Population Reaching Target ) 

 
Parameter   Doorway  Hallway  Zigzag 
  
Population �Lo    0.16   0.18  0.20 
Population � Hi    0.16   0.18  0.18  
 

Figure 4: Experiment 1 Results for Population

Experiment 2 Results Summary
(Number AVs reaching target at time step t) 

 
Parameter   Doorway  Hallway  Zigzag
t    1000                  1500  2500 
   
Sensor Range � Lo  11                 12  20 
Sensor Range -- Hi    9                   7    9 
Opening Width -- Lo     9                   8.5  15 

Opening Width � Hi  11                 10.5  14 
Social Structure � Off    5                   7.5  13 
Social Structure -- On  16                 11.5  15.5 
 

Figure 5: Experiment 2 Results

Experimental results for the first series of experiments are 
summarized in Fig. 4.  Due to a change in AV behavior and 
success measurement between experiments 1 and 2, we show 
only the results pertaining to population to eliminate confusing 
comparisons between experiment 1 and 2 data for other 
parameters.  In this experiment, AV collisions resulted in 
destruction of the AV, so the results show surviving vehicles 

reaching the target as a percentage of overall population.  The 
most consistent result of the first series of experiments was that 
a change in population did not significantly affect overall 
swarm behavior.  This is a reasonable result, as one of the 
perceived strengths of multi-agent models with de-centralized 
control is the robustness of behavior with respect to population 
size [5]. 

Summarized results for Experiment 2 are shown in Figure 5.  
Experiment 2 allowed AVs to survive collision.  Given enough 
time, all AVs will reach the target, so results present a snapshot 
of those reaching the target at time step t.  The time step at 
which the snap shot occurred was increased for the more 
complex scenarios to account for the fact that even successful 
strategies require more time to execute in complex 
environments.  This of course raises the issue of appropriate 
time step selection.  These time steps were selected as the point 
in each simulation when the rate of change of AVs arriving at 
the target was the same.  The only parameter showing truly 
consistent behavior across the three environments was the 
increased sensor range.  This implies that, even though reactive 
agents do not require global knowledge by definition, providing 

them with too little (or too local) information may not allow 
successful behaviors to transfer to new situations.  There 
appears to be a threshold at which the degree of information 
provided to the AVs allows for more robust behaviors.   The 
results for Experiment 3 demonstrated that the effects of social 
rules increased overall swarm performance, no definite pattern 
of robustness in behaviors across environments could be 

confirmed.  

CONCLUSIONS AND FUTURE WORK 
 
This section summarizes our results and places them in 

context of current and future work.  We stress that these results 
are preliminary and require more experimentation by ourselves 
and others before one can develop a framework of parameters 
that provide robust behaviors given specific agent capabilities 
and goals.  
 
 

Our first result is that the effects of population variation in 
the swarm were minimal throughout the scenarios.  This is a 
confirmation of the perception that reactive multi-agent systems 
with de-centralized control architectures are robust in this 
regard.  While cases may be constructed where population 
extremes affect performance, our data indicates that the 
performance of multi-agent reactive systems are robust with 
respect  to population size.  

 

Figure 3:  Opera Problem in MASON 
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Our second result is that increased sensor range afforded better 
transference of successful swarm behavior than did lower 
sensor range.  This implies that, while reactive agents operating 
cooperatively in a multi-agent environment do not require 
global knowledge, the system behavior may not be robust if 
agents are provided with too little knowledge.  System 
designers may need to be aware that systems designed to 
provide “just enough” information to agents while maintaining 
performance in a test environment may show degraded 
performance more readily than systems that provide more 
information with no immediate increase in performance in the 
test environment. 

 
These results require more investigation within the 

immediate problem domain and other multi-agent systems.  Our 
immediate future work is to extend these experiments to more 
complicated terrains within MASON, and then to extend to 
other simulation domains.  Longer term goals include exploring 
these parameters to study the transference of awareness and 
decision making from simulated to realized robotic agents.  
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