1) Let N be an arbitrary NFA $N = \langle Q, \Sigma, \delta, q_0, F \rangle$. We will show how to create another NFA N' with only one accept state such that $L(N) = L(N')$.

$N' = \langle Q', \Sigma, \delta', q_0', \delta_{\text{final}}, F' \rangle$ with

$Q' = Q \cup \epsilon_{\text{final}}$,

$\delta' = \delta \cup \epsilon_{\text{final}} \mid q_i \in F'$,

In essence, we add one new state to N, q_{final}, and make it an accept state. Then we add epsilon transitions from each of the original final states in N to q_{final} and leave this as the only accept state.

Now, we show $L(N) = L(N')$. Consider an arbitrary string that is accepted by N. There must exist a path for it to an accept state in N. From there, just take the epsilon transition to q_{final}. Thus N' also accepts this string. Next consider any string accepted by N'. To get to its accept state, the string must have come directly from a state $q_i \in F$ on an epsilon state transition, meaning that N accepts the string. Thus the languages are equal as desired.
2) \(L_1: \)

\[q_0 \rightarrow q_1 \rightarrow q_2 \]

\(q_1: \) all strings that start with 1.

\(q_2: \) all strings that start with 1 and end in 0.

Designing an NFA for \(L_1 \) is a bit easier than a DFA since we don't need to define \(\delta(q_0, 0) \) and \(\delta(q_2, x), x \in \{0, 1\} \).

\(L_2: \)

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \]

\(q_1: \) ends in 0, \(q_2: \) ends in 01

\(q_3: \) ends in 010, \(q_4: \) ends in 0101.

Non-determinism helps here greatly by allowing for us to "guess" the last 4 digits of the string.

3) \(a \)

\(b \)
Let D be a DFA that accepts A. We will use D to create an NFA A^R that accepts A^R. Make N's accept state equal to D's start state. For each transition in D of the form $\delta(q_i, a) = q_j$, create a transition in N of the form $\delta(q_j, a) = q_i$.

This "reverses" each transition. Finally, add a new start state to N, q_0. This state will have ε transitions of the form $\delta(q_0, \varepsilon) = q_i$ for each $q_i \in F$, where F is the set of final states in D. (Note: the only final state in N will be the old start state of D, so none of the $q_i \in F$ in D will be accept states in N unless $q_0 \in F$.)

The rationale behind this transformation is to allow each string from the original language to be read in backwards.

Here is an example of the transformation:

Original DFA for A:

![Original DFA diagram]

NFA for A^R:

![NFA diagram]

Any sequence of states followed in the original DFA can be "reversed" in the NFA, after the appropriate ε transition is taken.