1) Give the sequence of configurations that the Turing machine \(M_2 \) in chapter 3 of the text (and shown in class) goes through while reading in the three following strings:

 a) 000
 b) 0000
 c) 000000

2) What is the flaw in the following proof to show that if a language \(L \) is Turing recognizable, then we can create an enumerator to enumerate it? Remember that the sequence \(s_1, s_2, s_3, \ldots \), is an enumerated list of all strings in \(\Sigma^* \), from shortest to longest, in lexicographical order for all strings of the same length.

Let \(M \) be a Turing machine that recognizes \(L \).

We can create an enumerator \(E \) for \(L \) as follows:

1. Repeat the following for \(i = 1, 2, 3, \ldots \)
2. Run \(M \) on \(s_i \).
3. If it accepts, print out \(s_i \).

3) A Turing machines with a stay option is similar to an ordinary Turning machine except that the transition function has the form:

\[\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\} \]

If \(\delta(q, a) = (r, b, S) \), when the machine is in state \(q \) reading an \(a \), the machine’s head stays exactly where it is. Show that Turing machines with a stay option recognize the class of Turing-recognizable languages.

4) Show that Turing-decidable languages are closed under the following operations:

 a) union
 b) intersection
 c) complementation
 d) concatenation

5) Show that Turing-recognizable languages are closed under union and intersection. Why is it necessary to be more clever with these two proofs than those in question number 3?