1) Prove that \(L = \{0^i1^j \mid j \neq i \} \) over the alphabet \{0,1\} is not regular via the pumping lemma.

Solution

Note: This question is more difficult than the previous one. The trick is that somehow, no matter what the substring \(y \) is, that there will be an integer number of times you can pump it so that the number of 0s and 1s becomes equal.

Assume to the contrary, that \(L \) is regular. If so, then \(L \) satisfies the pumping lemma for regular languages. Consider the string \(s = 0^p1^{p!+p} \). This is a string in \(L \) that is of length \(p \) (the pumping length) or greater.

According to the pumping lemma, there exists a way to express \(s = xyz \), with \(|xy| \leq p\) and \(|y| > 0\), such that \(xy^nz \) is in \(L \).

Based on the given restrictions, we must have \(x = 0^i \), \(y = 0^j \), \(z = 0^{p-i}1^{p!+p} \), where \(i + j \leq p \) and \(j > 0 \).

Our goal is to show that at least one string of the form \(xy^nz \) is NOT in \(L \). Thus, our goal should be to “pump” enough 0’s so that the number of 0’s must equal the number of 1’s. Each time we pump the string, we add \(j \) number of 0’s. In the original string, there are \(p! \) more 1’s than 0s. Thus, we must add exactly \(p! \) number of 0’s. We can do this by pumping exactly \(p!/j \) times. Since \(1 \leq j \leq p \), it is guaranteed that \(j \) divides evenly into \(p! \).

Thus, we consider the string

\[
x y^{p!j} z = xy^{p!j} z = 0^{p+p!/j}1^{p!+p} = 0^{p+p!}1^{p!} + p \notin L,
\]

since the number of 0’s and 1’s in this string are equal. This contradicts the Pumping Lemma.

If follows that our assumption that \(L \) was regular must be faulty, thus \(L \) is not regular.

2) Using the result in class that if \(L_1 \) and \(L_2 \) are regular languages, then \(L_1 \cap L_2 \) is as well, prove the following assertion:

For languages \(L_1 \) and \(L_2 \), if \(L_1 \cap L_2 \) is NOT regular and \(L_1 \) is regular, then \(L_2 \) is not regular.

Solution

Let \(p, q \) and \(r \) be the following statements:

- \(p \): \(L_1 \) is a regular language.
- \(q \): \(L_2 \) is a regular language.
- \(r \): \(L_1 \cap L_2 \) is a regular language.
In class, we showed that \((p \land q) \rightarrow r\). We are asked to prove that \((\overline{r} \land p) \rightarrow \overline{q}\).

\[
\begin{align*}
(p \land q) & \rightarrow r \\
\overline{p} \land \overline{q} \lor r, & \text{ Definition of implication} \\
p \lor \overline{q} \lor r, & \text{ De Morgan’s Law} \\
(r \lor \overline{p}) \lor \overline{q}, & \text{ Commutative, Associative Laws} \\
r \lor \overline{p} \lor \overline{q}, & \text{ Double Negation} \\
\overline{r} \land \overline{p} \lor \overline{q}, & \text{ De Morgan’s Law} \\
\overline{r} \land \overline{p} \lor \overline{q}, & \text{ Double Negation} \\
(\overline{r} \land p) & \rightarrow \overline{q}. \quad \text{Definition of Implication}
\end{align*}
\]

In words, we can argue as follows:

We know that if both \(L_1\) and \(L_2\) are regular, that \(L_1 \cap L_2\) is also. But, if we know that \(L_1 \cap L_2\) is NOT regular, then the only way that can happen is if the statement, “both \(L_1\) and \(L_2\) are regular,” is false. Thus, given that \(L_1 \cap L_2\) is NOT regular, we can conclude that both \(L_1\) and \(L_2\) can’t be regular. Furthermore, we are given that \(L_1\) is regular. The only possible conclusion is that \(L_2\) is NOT regular.

3) Utilizing the result proven in question #2, show that the following language, \(L\), is not regular:

\[L = \{ a^i b^j c^k \mid i \geq 0, j \geq 0, k \geq 0, \text{if } i = 1, \text{ then } j = k, \text{ otherwise, there are no restrictions of } j, k\}\]

Solution

Let \(L_1 = ab^*c^*\) and \(L_2 = \{ a^i b^j c^k \mid i \geq 0, j \geq 0, k \geq 0, \text{if } i = 1, \text{ then } j = k, \text{ otherwise, there are no restrictions of } j, k\}\).

It follows that \(L_1 \cap L_2 = \{ab^j c^k \mid i \geq 1\}\). We can show that this language is not regular via the pumping lemma, using a nearly identical proof to the one shown in the book for \(L = \{a^ib^j \mid i \geq 0\}\). Since \(L_1\) is regular and \(L_1 \cap L_2\) is not regular in this instance, using the result proved in question #2, we can conclude that \(L_2\), the language presented in this question, is not regular.

4) Attempt to prove that \(L\) from question 3 is not regular utilizing the pumping lemma. What problem do you run into?

Solution

If we pick any string \(s\) that doesn’t have one a in \(L\), pumping \(s\) is trivial, since we can just add as many a’s as we want. Thus, if we want any sort of hope to prove that \(L\) isn’t regular via the pumping lemma, we must pick a string of the form \(ab^n c^n\), for some value of \(n\). An obvious choice would be \(ab^p c^p\), where \(p\) is the pumping length. The problem here is that we could easily set \(x = \varepsilon\), \(y = a\), and \(z = b^p c^p\), and all of the strings of the form \(xy^*z\), would be in \(L\), satisfying the pumping lemma. Thus, the general problem is that lots of strings are in this particular language \(L\), and no matter which long string we pick in the language, there’s always a choice for \(y\) that generates strings that are always in the language.
12) Here is a drawing of the original DFA:

![Diagram of DFA]

Algorithm

- $S[1, 5] = \{0, 2\}$ on a
- $S[3, 5] = \{0, 2\}$ on b
- $S[1, 5] = \{0, 2\}, \{0, 4\}$ on a
- $S[3, 5] = \{0, 2\}, \{0, 4\}$ on b
- $S[2, 4] = \{1, 3\}$ on a, b
- $D[1, 5] = 1$ by a
- $D[0, 2] = 1$ recursively
- $D[0, 4] = 1$ recursively
- $D[1, 6] = 1$ by a
- $D[2, 4]$ no action
- $D[3, 5] = 1$ by a
- $D[3, 6] = 1$ by a
- $D[5, 6]$ no action

Thus the states that can "stay together" are $\{q_1, q_3\}, \{q_2, q_4\}$, and $\{q_5, q_6\}$.

Here is the minimized DFA:

![Diagram of minimized DFA]

This is the language of the set of strings with length 1, or 3 or more.