Let N be an arbitrary NFA $N = (Q, \Sigma, \delta, q_0, F)$. We will show how to create another NFA N' with only one accept state such that $L(N) = L(N')$.

$N' = (Q', \Sigma, \delta', q_0', \delta_{final}')$ with

$Q' = Q \cup \{ q_{final}' \}$

$\delta' = \delta \cup \{ (q_i, \varepsilon) \rightarrow q_{final}' \mid q_i \in F \}$

In essence, we add one new state to N, q_{final}', and make it an accept state. Then we add epsilon transitions from each of the original final states in N to q_{final}' and leave this as the only accept state.

Now, we show $L(N) = L(N')$. Consider an arbitrary string that is accepted by N. There must exist a path for it to an accept state in N. From there, just take the epsilon transition to q_{final}'. Thus N' also accepts this string. Next consider any string accepted by N'. To get to its accept state, the string must have come directly from a state $q_i \in F$ on an epsilon transition, meaning that N accepts the string. Thus the languages are equal as desired.
2) \(L_1 \):

\[q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \]

- \(q_1 \): all strings that start with 1.
- \(q_2 \): all strings that start with 1 and end in 0.

Designing an NFA for \(L_1 \) is a bit easier than a DFA since we don't need to define \(\delta(q_0, 0) \) and \(\delta(q_2, x), x \in \{0, 1\} \).

\[L_2 : \]

\[q_0 \xrightarrow{0, 1} q_1 \xrightarrow{0} q_2 \xrightarrow{0} q_3 \xrightarrow{1} q_4 \]

- \(q_1 \): ends in 0, \(q_2 \): ends in 01
- \(q_3 \): ends in 010, \(q_4 \): ends in 0101.

Non-determinism helps here greatly by allowing for us to "guess" the last 4 digits of the string.
Let \(D \) be a DFA that accepts \(A \). We will use \(D \) to create an NFA \(N \), that accepts \(A^R \). Make \(N \)'s accept state equal to \(D \)'s start state. For each transition in \(D \) of the form \(\delta(q_i, a) = q_j \), create a transition in \(N \) of the form \(\delta(q_j, a^R) = q_i \). This "reverses" each transition. Finally, add a new start state to \(N \), \(q_0 \). This state will have \(\epsilon \) transitions of the form \(\delta(q_0, \epsilon) = q_i \) for each \(q_i \in F \), where \(F \) is the set of final states in \(D \). (Note: the only final state in \(N \) will be the old start state of \(D \), so none of the \(q_i \in F \) in \(D \) will be accept states in \(N \) unless \(q_0 \in F \).)

The rationale behind this transformation is to allow each string from the original language to be read in backwards.

Here is an example of the transformation:

Original DFA:

\[
\begin{array}{c}
q_0 \\
\downarrow \\
q_1 \\
\downarrow \\
q_2 \\
\end{array}
\]

\(\delta(q_0, 0) = q_1 \)

\(\delta(q_1, 0) = q_2 \)

\(\delta(q_2, 0) = q_0 \)

NFA for \(A^R \):

\[
\begin{array}{c}
q_0 \\
\downarrow \\
q_1 \\
\downarrow \\
q_2 \\
\end{array}
\]

\(\delta(q_0, 0^R) = q_1 \)

\(\delta(q_1, 0^R) = q_2 \)

\(\delta(q_2, 0^R) = q_0 \)

Any sequence of states followed in the original DFA can be "reversed" in the NFA, after the appropriate \(\epsilon \) transition is taken.
4) We assume that all strings in L must have at least one 1.

5) The language of the NFA is \(\Sigma^* - \varepsilon \).

6) Consider the following NFA:

Using Tommy's transformation, the NFA for the language \(\Sigma \) would be.

But, this NFA accepts \(\Sigma^* \), which is NOT \(\Sigma^* - \varepsilon \). Specifically, the string 1 is accepted by both machines, proving that the second does NOT accept the complement language of the first.

7) We will show that B is regular by creating a DFA that accepts B^R. Our DFA will have 3 states representing these points in our construction:

\(q_0 \): What we have read in so far adds up correctly.

\(q_1 \): What we have read in matches all the answer bits, BUT we have a carry bit we are expecting in the next character to read in.

\(q_2 \): There is already a mistake in the answer bits. Nothing in this state can be accepted, regardless of what is read in, in the future.
Explanation of transitions:

$q_0
ightarrow q_0$: In all 3 of these, the first two bits add to the third, maintaining equality.

$q_0
ightarrow q_1$: The parity of the bottom bit is the same as the sum of the top two, but a carry bit is produced, so the current string is no longer valid.

$q_0
ightarrow q_2$: The parity of the answer bit is incorrect. All strings with this prefix are NOT in the designated language.

$q_1
ightarrow q_0$: This fixes the previous carry bit problem.

$q_1
ightarrow q_1$: The carry bit has cascaded to the next bit.

$q_1
ightarrow q_2$: The current bit is now incorrect, so all strings with this prefix are NOT in the language.