1. A correspondence between \mathbb{N} and \mathbb{Z} is defined by ordering the latter thus
 \[0, 1, -1, 2, -2, 3, -3, \ldots\]
 Give a mathematical formula for this correspondence. (i.e. find $f : \mathbb{N} \rightarrow \mathbb{Z}$ which is one-to-one and onto).

 Hint: $(-1)^i$ can be used to alternate positive and negative signs. You might also want to use the “floor” and/or “ceiling” integer functions.

2. (from Test 1) Describe a way to list the set of finite subsets of the natural numbers.

 Hint: recall the technique I used in lecture 4 to show that the set of languages over the binary alphabet is not countable.

3. Denote by $\neg u$ the negation of the Boolean variable u. Here is a proof that
 \[\neg (x \lor y) \iff (\neg x \land \neg y)\]

 proof: If $x = T$ then
 \[
 \neg (x \lor y) \iff \neg (T \lor y) \\
 \iff \neg T \\
 \iff F
 \]
 and
 \[
 (\neg x \land \neg y) \iff (\neg T \land \neg y) \\
 \iff (F \land \neg y) \\
 \iff F.
 \]
Since the formula is symmetric in \(x, y \), the claim is also true if \(y = T \).
The remaining case is \(X = Y = F \). In this case

\[
\neg(x \lor y) \iff \neg(F \lor F) \\
\iff \neg F \\
\iff T
\]

and

\[
(\neg x \land \neg y) \iff (\neg F \land \neg F) \\
\iff (T \land T) \\
\iff T.
\]

Give an analogous proof that

\[
\neg(x \land y) \iff (\neg x \lor \neg y).
\]

4. Exercise 1.2, page 83 of text.

5. Exercise 1.4, page 84 of text.