Present a language \(L \) over \(\Sigma = \{a\} \) where \(L^3 = L^4 \) but \(L \neq L^2 \) and \(L^2 \neq L^3 \)

Note: \(L^k = \{ x_1x_2...x_k \mid x_1,x_2,...,x_k \in L \} \)

Proof:
Consider \(L = \{a\}^* - \{aa, aaa\} \)

\(L^2 = \{a\}^* - \{aaa\} \) since the presence of the empty string in \(\{a\}^* \) means all strings in \(L \) are in \(L^2 \). Additionally, \(aa = a^* a \) and so \(aa \) is in \(L^2 \) but \(aaa \) is not since it cannot be formed from any pair of members in \(L \)

\(L^3 = \{a\}^* \) since the presence of the empty string in \(\{a\}^* \) means all strings in \(L^2 \) are in \(L^3 \)
Additionally, \(aaa = aa^* a \) and so \(aaa \) is in \(L^3 \)

\(L^3 = L^4 \) since \(L^3 \) is already \(\{a\}^* \) and so nothing new can be created and the presence of the empty string in \(\{a\}^* \) means all in \(L^3 \) are in \(L^4 \)