Instructor: Euripides Montagne
Tele.: 823-2684
email: eurip@cs.ucf.edu

Lecture meetings:
TR 4:30 p.m. – 5:45 p.m. (ENG2 105)

Office hours:
MW from 1:00 p.m. to 3:00 p.m. (ENG III 217)
TR from 2:00 p.m. to 4:00 p.m. (ENG III 217)

TA: John Tanner
Tele.: 823-3081
email: jitanne@cs.ucf.edu

TA office hours: W 2:00 p.m. to 4:00 p.m. (ENG III 303)

Course Outline:
The goal of the course is to teach fundamentals concepts and design principles of operating systems.

Prerequisites:
• COP 3530C – Computer Science III.
• COP 3402C – System Concepts/Programming.
• COT 3960 - Foundation Exam.
• Proficiency in C and Familiarity with UNIX.

If you have not satisfied all of the above prerequisites, you do not belong in this class and have little chance of passing.

Reference Guide:
The textbook for the course is: H. M. Deitel, P. Deitel, and D. Choffnes, “Operating Systems” 3rd Edition, Prentice Hall, 2004. We will cover Chapters 1-13. You are responsible for the material contained in all of those chapters, even if it is not discussed in class. Time permitting we may cover parts of Chapter 19.

Style of Class Meetings:
Class meetings will not consist of traditional lectures, with the instructor doing most of the talking and the student doing most of the listening. Rather, meetings will consist of discussions on each topic and the instructor will help guide the discussion by asking questions.

Grading Policy:
• (25%) Exam #1 – closed book, closed notes exam given in class.
• (25%) Exam #2 – closed book, closed notes exam given in class.
• (25%) Final Exam – closed book, closed notes comprehensive exam given during final exam week.

Note: You must score at least 60% on this exam to pass the course.
• (20%) Programming project – a large, multi-part simulation of a multiprogramming operating system. Written in C on a UNIX system, this project is not easy, but can be done in the time allotted. The grade for this project will be divided between your C code, one or more demonstrations of your project, your documentation and quizzes given on selected topics from the project.
• (5%) Concurrent programming assignments.
Letter grades: 90-100: A, 80-89: B, 70-79: C, 50-69: D, Below 50: F.

Note: Any academic dishonesty (including, but not limited to, Cheating, copying and/or plagiarism) with respect to any exam or assignment in this class will result in a grade of **F**, following by the usual procedures for dealing with such behavior, as describe in the *UCF Golden Rule: a handbook for students.*

The Semester Plan: Tentative.

Jan. 9th - Operating System Fundamentals.
Jan. 11th - Computer System Structure.
Jan. 16th - Interrupt Handling.
Jan. 18th - Interrupt Handling
Jan. 25th - Processes and Threads.
Jan. 30th - Process Synchronization.
Feb. 1st - Process Synchronization.
Feb. 6th - Process Scheduling
Feb. 8th - Memory Management
Feb. 13th - Review
Feb. 15th – **First Midterm Exam.**
Feb. 20th – Virtual Memory
Feb. 22nd - Virtual Memory
Feb. 27th - I/O Structure
March 1st - Disk Scheduling
March 6th - System Performance Evaluation
March 8th – System Performance Evaluation
March 20th - Review
March 22nd - **Second Midterm Exam.**
March 27th - Process Synchronization II
March 29th - Process Synchronization II
April 3rd - Resource Allocation and Deadlock
April 5th - Resource Allocation and Deadlock
April 10th - File System
April 12th - File System and protection
April 17th- Review
April 19th-- **Final Exam**

COP 4600 Programming Project (Fall 2007)

This project is divided into 3 parts to make it more manageable. Details will be given out well before the due dates for each part (the parts of the project are called *objectives*). This project must be written in **C**(not **C++**) on a UNIX system. The standard for this class will be the Sun Sparc system in the main computer lab. called Olympus. You are welcome to write and test code on some other system, if you wish, but it will be graded on Olympus and if it does not work there, it does not work. You will be given an Olympus account and, once the project has begun, should check your e-mail regularly for updates.

To pass this course, you **must** successfully complete objectives 1, 2 and 3. No exceptions.

Each objective will have a due date and points will be subtracted for submission after that date. Also, after each due date some evaluations of your progress will be made. This may include a walk through of your code with the instructor or grader, a quiz on the objectives that was just completed (including questions about code, data structures and/or algorithms) or a short, written description of the purpose and implementation of the objective. Details will be handed out with each objective and I reserve the right to change the method of evaluation at any time.
In general, this project will give you a better understanding of the data structures and control flow of a multiprogramming operating system and also provide you with experience in developing and debugging a complex software project.

Lets make this clear: when working on the project, you are allowed to talk to other students about programming concepts, C syntax and general solutions to problems (algorithms or questions about the project instructions), but you are not allowed to share, exchange or copy code. Both the source and the recipient of any exchange of code are equally at fault.

Important Dates:
- Classes begin: January 8.
- First Midterm exam: Feb 15.
- Withdrawal deadline: March 2.
- Second Midterm exam: March 22.
- Classes end: April 23.
- Final exam: April 26.
- **Fall Holidays are:**
 - Martin Luther King Jr. Day: January 15.
 - Spring Break: March 12 – 17.