Incremental Hull Finding Algorithm

Add the points one at a time.
At each step update the Hull to incorporate the next point.

First Hull is a triangle (3 points).

Let H_j be the Hull after after j points.
Let P be $(j+1)$th point.

Case 1: P is either inside or on H_j. Then $H_{j+1} \leftarrow H_j$ \hspace{1cm} \(\text{--- O}(j)\) time.

Case 2: P is not inside H_j. Then find two tangent points from P to H_j. Replace all points between the two tangent points by P. \hspace{1cm} \(\text{--- O}(j)\) time

Total Time complexity: $3+4+5+\ldots+k = O(k^2)$ where k is the total number of points in the Hull. In the worst case $k = n$.
So the total complexity is $O(n^2)$.

Tangent Line: The line touching the convex surface at exactly one point.
Tangent Point: The point at which tangent line touches the convex surface.

How to Find a Tangent point to a convex polygon. Let P_i is the i-th point.

\[
\text{IsTangentPoint}(i, P) \\
\quad \text{// i is the index of the point in the Polygon.} \\
\quad \text{return } \text{isLeftOn}(P_{i-1}, P_i, P) \oplus \text{isLeftOn}(P_i, P_{i+1}, P)
\]

NOTE: Because of the cyclic nature of the polygon, when $i = 0$, P_{i-1} is P_{n-1}. and when $i = n-1$, P_{i+1} is P_0.