Red-Black Tree

• A Binary Search Tree.
• Every node in this tree is colored in either Red or Black.
• A historically popular alternative to the AVL tree.
• Operation on red-black trees take $O(\log n)$ time in the worst case.

Red-Black Tree

• Root Property: The root is black
• External Property: Every external node is black
• Internal Property: The children of a red node are black
• Depth Property: All the external nodes have the same black depth
Height of a Red-Black Tree

- **Theorem:** A red-black tree storing \(n \) items has height \(\Theta(\log n) \)

 Proof:

 Depth Property: All external nodes have same black depth \(d \).

 If all nodes were black then

 \(d \leq \log(n+1) \)

 Internal node Property: The children of a red node are black.

 i.e. \(h \leq 2d \)

 Thus

 \(\log(n+1) \leq h \leq 2 \log(n+1) \)

 so height is \(\Theta(\log n) \)

By the above theorem, searching in a red-black tree takes \(\Theta(\log n) \) time.

Insertion

- we execute the insertion algorithm for binary search trees
- Let the newly inserted node is root then color it black else color it red
- We preserve the root, external, and depth properties
 - If the parent of the node is black, we also preserve the internal property and we are done
 - Else (parent is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
- Example: Sequence 6, 3, 8, 4

Insert 4

Remedying a Double Red

- Consider a double red with child \(z \) and parent \(v \), and let \(w \) be the sibling of \(v \)

 Case 1: \(w \) is black

 - Restructure: Same as done for AVL trees.
Restructuring
- A restructuring remedies a child-parent double red when the parent red node has a black sibling
- The internal property is restored and the other properties are preserved

Remedying a Double Red
- Consider a double red with child \(z \) and parent \(v \), and let \(w \) be the sibling of \(v \)

 Case 2: \(w \) is red
 - The double red corresponds to an overflow
 - Recolor and continue up
Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling.
- The parent \(v \) and its sibling \(w \) become black and the grandparent \(u \) becomes red, unless it is the root.
- The double red violation may propagate to the grandparent \(u \).

Analysis of Insertion

```
Algorithm insertItem(k, e)
1. We search for key k to locate the external insertion node z
2. We add the new item (k, e) at node z and color z red
3. while doubleRed(z)
   if isBlack(sibling(parent(z)))
     z ← restructure(z)
     return
   else if sibling(parent(z)) is red
     z ← recolor(z)
```

Deletion

- To perform operation remove(k), we first execute the deletion algorithm for binary search trees.
- Let \(v \) be the internal node removed, \(w \) the external node removed, and \(r \) the sibling of \(w \).
 - If either \(v \) or \(r \) was red, we color \(r \) black and we are done.
 - Else \((v \) and \(r \) were both black) we color \(r \) double black, which is a violation of the internal property requiring a reorganization of the tree.
- Example the deletion of 4 is simple:
Deletion

- To perform operation remove(k), we first execute the deletion algorithm for binary search trees
- Let v be the internal node removed, w the external node removed, and r the sibling of w
 - If either v or r was red, we color r black and we are done
 - else (v and r were both black) we color r double black, which is a violation of the internal property requiring a reorganization of the tree
- Example where the deletion of 8 causes a double black:

Remedying a Double Black

- The algorithm for remedying a double black node r with sibling w considers three cases
 - Case 1: w is black and has a red child
 - We perform a restructuring, equivalent to a transfer, and we are done
 - Case 2: w is black and its children are both black
 - We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation
 - Case 3: w is red
 - We perform an adjustment, after which either Case 1 or Case 2 applies
- Deletion in a red-black tree takes $O(\log n)$ time

Remedying a Double Black

Case 1: w is black and has a red child
- We perform a restructuring
- We color r black
- We color a and c black.
- We color b with the same color as the parent of r.
Remedying a Double Black

Case 2: \(w \) is black and its children are both black
- We perform a re-coloring
 - We color \(r \) black
 - We color \(w \) red
 - If the parent is red we color it black else we color it double black.
Summary of Red-Black Trees

- Insertion or deletion may cause local perturbation
 - two consecutive red nodes or a double-black node.
- The perturbation is either
 - resolved locally (restructuring)
 - propagated to a higher level in the tree by re-coloring
- $O(1)$ time for a restructuring or re-coloring
- At most one restructuring per insertion and at most two restructuring per deletion.
- $O(\log n)$ re-coloring
- Total time: $O(\log n)$

Skip Lists

Skip List

Question:
- Can we create a structure that adds the best properties of Array and Linked list Data Structure?
 - Query: $O(\log n)$ in sorted Arrays
 - Insert/Removal: $O(1)$ in Linked List
What is a Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \ldots, S_h such that:
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_h contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h$
 - List S_h contains only the two special keys

- We show how to use a skip list to implement the dictionary ADT.

Search

- We search for a key x in a skip list as follows:
 - We start at the first position of the top list.
 - At the current position p, we compare x with $y \leftarrow \text{key}(\text{after}(p))$.
 - $x = y$: we return $\text{element}(\text{after}(p))$.
 - $x > y$: we "scan forward".
 - $x < y$: we "drop down".
 - If we try to drop down past the bottom list, we return NO_SUCH_KEY.

Example: search for 78

Insertion

- To insert an item (x, o) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads.
 - If $i \geq h$, we add to the skip list new lists S_{i+h}, \ldots, S_h, each containing only the two special keys.
 - We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with largest key less than x in each list S_0, S_1, \ldots, S_i.
 - For $j = 0, \ldots, i$, we insert item (x, o) into list S_j after position p_j.

Example: insert key 15, with $i = 2$.
Deletion

- To remove an item with key x from a skip list, we proceed as follows:
 - We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with key x, where position p_j is in list S_j.
 - We remove positions p_0, p_1, \ldots, p_i from the lists S_0, S_1, \ldots, S_i.
 - We remove all but one list containing only the two special keys.
- Example: remove key 34

![Diagram showing deletion process]

Implementation

- We can implement a skip list with quad-nodes.
- A quad-node stores:
 - item
 - link to the node before
 - link to the node after
 - link to the node below
 - link to the node above
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting i consecutive heads when flipping a coin is $1/2^i$.
 - Fact 2: If each of n items is present in a set with probability p, the expected size of the set is np.
- Consider a skip list with n items:
 - By Fact 1, we insert an item in list S_i with probability $1/2^i$.
 - By Fact 2, the expected size of list S_i is $n/2^i$.
- The expected number of nodes used by the skip list is
 \[
 \sum_{i=0}^{\infty} \frac{n}{2^i} = n \sum_{i=0}^{\infty} \frac{1}{2^i} < 2n
 \]
- Thus, the expected space usage of a skip list with n items is $O(n)$.
Height

- The running time of the search and insertion algorithms is affected by the height h of the skip list.
- We show that with high probability, a skip list with n items has height $O(\log n)$.
- We use the following additional probabilistic fact:
 Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np.
- Consider a skip list with n items.
 - By Fact 1, we insert an item in list S_i with probability $1/2^i$.
 - By Fact 3, the probability that list S_i has at least one item is at most 2^{-i}.
 - By picking $i = 3\log n$, we have the probability that $S_{3\log n}$ has at least one item is at most $2^{-3\log n} = 2/n^3$.
 - Thus a skip list with n items has height at most $3\log n$ with probability at least $1 - 2/n^3$.

Search and Update Times

- The search time in a skip list is proportional to:
 - the number of drop-down steps, plus
 - the number of scan-forward steps.
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ with high probability.
- To analyze the scan-forward steps, we use yet another probabilistic fact:
 Fact 4: The expected number of coin tosses required in order to get tails is 2.
- When we scan forward in a list, the destination key does not belong to a higher list.
 - A scan-forward step is associated with a former coin toss that gave tails.
 - By Fact 4, in each list the expected number of scan-forward steps is 2.
 - Thus, the expected number of scan-forward steps is $O(\log n)$.
 - We conclude that a search in a skip list takes $O(\log n)$ expected time.
 - The analysis of insertion and deletion gives similar results.

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n items, the expected space used is $O(n)$.
- The expected search, insertion and deletion time is $O(\log n)$.
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability.
- Skip lists are fast and simple to implement in practice.