AVL Trees (contd.)

Insertion

- If an insertion causes T to become unbalanced, we travel up the tree from the newly created node until we find the first node x such that its grandparent z is unbalanced node.
- Since z became unbalanced by an insertion in the subtree rooted at its child y,
 \[\text{height}(y) = \text{height}(\text{siblings}(y)) + 2 \]
- Now to rebalance...

Restructure Algorithm

\textbf{Algorithm \textit{restructure}(x, y, z):}

\begin{itemize}
 \item \textbf{Input:} A node x of a binary search tree T that has both a parent y and a grandparent z
 \item \textbf{Output:} Tree T restructured by a rotation (either single or double) involving nodes x, y, and z.
\end{itemize}

Let (a, b, c) be an in-order listing of the nodes x, y, and z.

Let (T_0, T_1, T_2, T_3) be an in-order listing of the four sub-trees of x, y, and z.

Replace the sub-tree rooted at x with a new sub-tree rooted at b.

Make a the left child of b and T_0, T_1 be the left and right sub-trees of a.

Make c the right child of b and T_2, T_3 be the left and right sub-trees of c.
Restructuring (as Single Rotations)
• Single Rotations:

Restructuring (as Double Rotations)
• double rotations:

Restructure Algorithm (continued)
• Now create an Array of 8 elements. At rank 0 place the parent of z.

Cut() the 4 T trees and place them in their in-order rank in the array
Restructure Algorithm (continued)

• Now cut x, y, and z in that order (child, parent, grandparent) and place them in their in-order rank in the array.

```
1 2 3 4 5 6 7
```

• Now we can re-link these sub-trees to the main tree.

• Link in rank 4 (b) where the sub-tree’s root formerly

```
<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
```

Restructure Algorithm (continued)

• Link in ranks 2 (a) and 6 (c) as 4’s children.

```
<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
```

Restructure Algorithm (continued)

• Finally, link in ranks 1, 3, 5, and 7 as the children of 2 and 6.

```
<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
```

• Now you have a balanced tree!
Restructure Algorithm (continued)

• NOTE:
 – This algorithm for restructuring has the exact same effect as using the four rotation cases discussed earlier.
 – Advantages: no case analysis, more elegant

Removal

• We can easily see that performing a `removeAboveExternal(w)` can cause T to become unbalanced.
• Let z be the first unbalanced node encountered while traveling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
• We can perform operation `restructure(x)` to restore balance at the sub-tree rooted at z.

Removal in an AVL Tree

• Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.
• Example:
Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We perform $\text{restructure}(x)$ to restore balance at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.

Removal (contd.)

- NOTE: restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.

Running Times for AVL Trees

- a single restructure is $O(1)$
 - using a linked-structure binary tree
- find is $O(\log n)$
 - height of tree is $O(\log n)$, no restructures needed
- insert is $O(\log n)$
 - initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$
 - One restructuring is sufficient to restore the global height balance property
- remove is $O(\log n)$
 - initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$
 - Single re-structuring is not enough to restore height balance globally. Continue walking up the tree for unbalanced nodes.
Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores \(d - 1 \) key-element items \((k_i, o_i)\), where \(d \) is the number of children
 - For a node with children \(v_1, v_2, \ldots, v_d \) storing keys \(k_1, k_2, \ldots, k_d \):
 - keys in the subtree of \(v_1 \) are less than \(k_1 \)
 - keys in the subtree of \(v_i \) are between \(k_{i-1} \) and \(k_i \) (\(i = 2, \ldots, d - 1 \))
 - keys in the subtree of \(v_d \) are greater than \(k_{d-1} \)
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item \((k, o)\) of node \(v \) between the recursive traversals of the subtrees of \(v \) rooted at children \(v_1 \) and \(v_2, \ldots, v_d \)
- An inorder traversal of a multi-way search tree visits the keys in increasing order
Multi-Way Searching

- Similar to search in a binary search tree
- A each internal node with children \(v_1, v_2, \ldots, v_d \) and keys \(k_1, k_2, \ldots, k_d \):
 - \(k = k_i (i = 1, \ldots, d - 1) \) the search terminates successfully
 - \(k < k_1 \) we continue the search in child \(v_1 \)
 - \(k_i < k < k_{i+1} (i = 2, \ldots, d - 1) \) we continue the search in child \(v_i \)
 - \(k > k_d \) we continue the search in child \(v_d \)
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

(2,4) Tree

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

- Theorem: A (2,4) tree storing \(n \) items has height \(O(\log n) \)
 - Proof:
 - Let \(h \) be the height of a (2,4) tree with \(n \) items
 - Since there are at least 2^i items at depth \(i = 0, \ldots, h - 1 \) and no items at depth \(h \), we have
 \[n \geq 2 \times 2^1 + 4 \times 2^2 + \ldots + 2^{h-1} = 2^h - 1 \]
 - Thus, \(h \leq \log (n + 1) \)
- Searching in a (2,4) tree with \(n \) items takes \(O(\log n) \) time
Insertion
- We insert a new item \((k, o)\) at the parent \(v\) of the leaf reached by searching for \(k\)
 - We preserve the depth property but
 - We may cause an overflow (i.e., node \(v\) may become a 5-node)
- Example: inserting key 30 causes an overflow

\[
\begin{array}{c}
27 & 30 & 32 & 35 \\
10 & 15 & 24 \\
2 & 8 & 12 & 18
\end{array}
\]

Overflow and Split
- We handle an overflow at a 5-node \(v\) with a split operation:
 - Let \(v_1 \ldots v_5\) be the children of \(v\) and \(k_1 \ldots k_4\) be the keys of \(v\)
 - Node \(v\) is replaced nodes \(v'\) and \(v''\)
 - \(v'\) is a 3-node with keys \(k_1\) and children \(v_1 v_2 v_3\)
 - \(v''\) is a 2-node with key \(k_4\) and children \(v_4 v_5\)
 - Key \(k_3\) is inserted into the parent \(u\) of \(v\) (a new root may be created)
- The overflow may propagate to the parent node \(u\)

Analysis of Insertion

\[\text{Algorithm insertItem}(k, o)\]
1. We search for key \(k\) to locate the insertion node \(v\)
2. We add the new item \((k, o)\) at node \(v\)
3. While overflow \((v)\)
 If isRoot \((v)\)
 Create a new empty root above \(v\)
 \(v \leftarrow \text{split}(v)\)
- Let \(T\) be a (2,4) tree with \(n\) items
 - Tree \(T\) has \(O(\log n)\) height
 - Step 1 takes \(O(\log n)\) time because we visit \(O(\log n)\) nodes
 - Step 2 takes \(O(1)\) time
 - Step 3 takes \(O(\log n)\) time because each split takes \(O(1)\) time and we perform \(O(\log n)\) splits
- Thus, an insertion in a (2,4) tree takes \(O(\log n)\) time
Deletion

- We reduce deletion of an item to the case where the item is at the node with leaf children.
- Otherwise, we replace the item with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter item.
- Example: to delete key 24, we replace it with 27 (inorder successor).

\[\begin{array}{l}
\text{Old tree:} \\
\text{10 15 24} \\
\text{2 8} \\
\text{12 18} \\
\text{32 35} \\
\text{New tree:} \\
\text{10 15 27} \\
\text{2 8} \\
\text{12 18} \\
\text{32 35} \\
\end{array} \]

Underflow and Fusion

- Deleting an item from a node \(v \) may cause an underflow, where node \(v \) becomes a 1-node with one child and no keys.
- To handle an underflow at node \(v \) with parent \(u \), we consider two cases.
 - Case 1: the adjacent siblings of \(v \) are 2-nodes.
 - Fusion operation: we merge \(v \) with an adjacent sibling \(w \) and move an item from \(u \) to the merged node \(v' \).
 - After a fusion, the underflow may propagate to the parent \(u \).

\[\begin{array}{l}
\text{Old tree:} \\
\text{2 5 7} \\
\text{10} \\
\text{4 9} \\
\text{6 8} \\
\text{2} \\
\text{New tree:} \\
\text{2 5 7} \\
\text{10} \\
\text{4 8} \\
\text{6} \\
\end{array} \]

Underflow and Transfer

- To handle an underflow at node \(v \) with parent \(u \), we consider two cases.
 - Case 2: an adjacent sibling \(w \) of \(v \) is a 3-node or a 4-node.
 - Transfer operation: we move a child of \(w \) to \(v \), move an item from \(u \) to \(v \), move an item from \(w \) to \(u \).
 - After a transfer, no underflow occurs.
Analysis of Deletion

- Let T be a (2,4) tree with n items
 - Tree T has $O(\log n)$ height
- In a deletion operation
 - We visit $O(\log n)$ nodes to locate the node from which to delete the item
 - We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
 - Each fusion and transfer takes $O(1)$ time
- Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time

Red-Black Tree

- A Binary Search Tree.
- Every node in this tree is colored in either Red or Black.
- A historically popular alternative to the AVL tree.
- Operation on red-black trees take $O(\log n)$ time in the worst case.
Red-Black Tree

- **Root Property:** The root is black
- **External Property:** Every external node is black
- **Internal Property:** The children of a red node are black
- **Depth Property:** All the external nodes have the same black depth

![Red-Black Tree Diagram]

Height of a Red-Black Tree

- **Theorem:** A red-black tree storing n items has height $O(\log n)$
- **Proof:**
 - **Depth Property:** All external nodes have same black depth d.
 - If all nodes were black then
 - $d \leq \log(n+1)$
 - **Internal node Property:** The children of a red node are black.
 - i.e. $h \leq 2d$
 - Thus
 - $\log(n+1) \leq h \leq 2 \log(n+1)$
 - So height is $O(\log n)$

By the above theorem, searching in a red-black tree takes $O(\log n)$ time

Insertion

- We execute the insertion algorithm for binary search trees
- Let the newly inserted node is root then color it black else color it red
- We preserve the root, external, and depth properties
 - If the parent of the node is black, we also preserve the internal property and we are done.
 - Else (parent is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
- Example: Sequence 6, 3, 8, 4

![Insertion Diagram]
Remedying a Double Red

- Consider a double red with child \(z \) and parent \(v \), and let \(w \) be the sibling of \(v \)

Case 1: \(w \) is black
 - Restructure: Same as done for AVL trees.

Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling
- The internal property is restored and the other properties are preserved

Restructuring (cont.)

- There are four restructuring configurations depending on whether the double red nodes are left or right children
Remedying a Double Red

- Consider a double red with child z and parent v, and let w be the sibling of v

Case 2: w is red
 - The double red corresponds to an overflow
 - Recolor and continue up

Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling
- The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- The double red violation may propagate to the grandparent u