Prefix Averages (Method 1)

- The following algorithm computes prefix averages in quadratic time by applying the definition.

<table>
<thead>
<tr>
<th>Algorithm <code>prefixAverages1(X, n)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>#operations</td>
</tr>
<tr>
<td>A ← new array of n integers</td>
</tr>
<tr>
<td>for i ← 0 to n - 1 do</td>
</tr>
<tr>
<td>s ← X[0]</td>
</tr>
<tr>
<td>for j ← 1 to i do</td>
</tr>
<tr>
<td>s ← s + X[j]</td>
</tr>
<tr>
<td>A[i] ← s / (i + 1)</td>
</tr>
<tr>
<td>return A</td>
</tr>
</tbody>
</table>

run time $T(n) = (c_1 n^2 + c_2 n)$

Prefix Averages (Method 2)

<table>
<thead>
<tr>
<th>Algorithm <code>prefixAverages2(X, n)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>#operations</td>
</tr>
<tr>
<td>A ← new array of n integers</td>
</tr>
<tr>
<td>s ← 0</td>
</tr>
<tr>
<td>for i ← 0 to n - 1 do</td>
</tr>
<tr>
<td>s ← s + X[i]</td>
</tr>
<tr>
<td>A[i] ← s / (i + 1)</td>
</tr>
<tr>
<td>return A</td>
</tr>
</tbody>
</table>

run time $T(n) = (c_3 n + c_4)$
Tools: Asymptotic Notation

- Algorithm 1: \(T(n) = (c_1n^2 + c_2n) \).
 The quadratic growth of the running time \(T(n) \) is an intrinsic property of algorithm \textit{prefixAverages1}
 \[T(n) = O(n^2) \]

- Algorithm 2: \(T(n) = (c_3n + c_4) \).
 The linear growth of the running time \(T(n) \) is an intrinsic property of algorithm \textit{prefixAverages2}
 \[T(n) = O(n) \]

Big-Oh Rules

1. Drop lower-order terms
2. Drop constant factors
 - If \(T(n) \) is a polynomial of degree \(d \), then \(T(n) \) is \(O(n^d) \), i.e.,
 - ex: \(7n-3 \) is \(O(n) \)
 - \(3\log n + \log \log n \) is \(O(\log n) \)
 - \(8n^3\log n + 5n^2 + n \) is \(O(n^3\log n) \)

Asymptotic Notation

- \textbf{Big-Oh}, \(O(f(n)) \): Asymptotic upper bound
 - given functions \(T(n) \) and \(f(n) \), \(T(n) \) is \(O(f(n)) \) if and only if there are positive constants \(c \) and \(n_0 \) such that \(T(n) \leq c f(n) \) for \(n \geq n_0 \)
"Big Oh" Example

Example: $2n+6$ is $O(n)$

For functions $T(n)$ and $f(n)$ (to the right) there are positive constants c and n_0 such that:

$T(n) \leq c f(n)$ for $n \geq n_0$

Conclusion:

$2n+6$ is $O(n)$.

Another Example

On the other hand...

n^2 is not $O(n)$ because there is no c and n_0 such that:

$n^2 \leq cn$ for $n \geq n_0$

(As the graph to the right illustrates, no matter how large a c is chosen there is an n big enough that $n^2 > cn$).

Big-Oh Examples

- $7n-2$
 - $7n-2$ is $O(n)$
 - need $c > 0$ and $n_0 \geq 1$ such that $7n-2 \leq cn$ for $n \geq n_0$
 - this is true for $c = 7$ and $n_0 = 1$

- $3n^2 + 20n^2 + 5$
 - $3n^2 + 20n^2 + 5$ is $O(n^2)$
 - need $c > 0$ and $n_0 \geq 1$ such that $3n^2 + 20n^2 + 5 \leq cn^2$ for $n \geq n_0$
 - this is true for $c = 4$ and $n_0 = 21$

- $3 \log n + \log \log n$
 - $3 \log n + \log \log n$ is $O(\log n)$
 - need $c > 0$ and $n_0 \geq 1$ such that $3 \log n + \log \log n \leq c \log n$ for $n \geq n_0$
 - this is true for $c = 4$ and $n_0 = 2$
Asymptotic Notation (cont.)

• Caution:
 It is correct to say “2n + 6” is $O(n^2)$.

However, a better statement is “2n + 6” is $O(n)$, that is, one should make the approximation as tight as possible.

Asymptotic Notation (cont.)

• Special classes of algorithms:
 - Constant: $O(1)$
 - Logarithmic: $O(\log n)$
 - Linear: $O(n)$
 - Quadratic: $O(n^2)$
 - Polynomial: $O(n^k), k \geq 1$
 - Exponential: $O(a^n), n > 1$

“Relatives” of the Big-Oh:
- $\Omega(f(n))$: Big Omega—asymptotic lower bound
- $\Theta(f(n))$: Big Theta—asymptotic tight bound
- $o(f(n))$: Little oh—asymptotic less than

Asymptotic Notation (cont.)

• Big Omega, $\Omega(f(n))$: asymptotic lower bound
 - Given functions $T(n)$ and $f(n)$. $T(n)$ is $\Omega(f(n))$ if and only if there are positive constants c and n_0 such that $T(n) \geq c f(n)$ for $n \geq n_0$

Example:
 $3\log n + \log \log n$ is $\Omega(\log n)$

Proof:
 $3\log n + \log \log n \geq 3\log n$ for $n \geq 2$
Asymptotic Notation (cont.)

- **Big Theta, \(\Theta(f(n)) \):** asymptotic tight bound
 - given functions \(T(n) \) and \(f(n) \), \(T(n) \) is \(\Theta(f(n)) \) if \(T(n) \) is \(O(f(n)) \) and \(T(n) \) is \(\Omega(f(n)) \).
 - or in other words
 - there exist positive constants \(c_1 \) and \(c_2 \) and \(n_0 \) such that \(c_1 f(n) \leq T(n) \leq c_2 f(n) \)

example:

\[3 \log n + \log \log n \text{ is } \Theta(\log n) \]

proof:

\[3 \log n + \log \log n \leq 4 \log n \text{ for } n \geq 2 \Rightarrow O(\log n) \]

\[3 \log n + \log \log n \geq 3 \log n \text{ for } n \geq 2 \Rightarrow \Omega(\log n) \]

Asymptotic Notation (cont.)

- **little oh, \(o(f(n)) \):** asymptotic less than
 - given functions \(T(n) \) and \(f(n) \), \(T(n) \) is \(o(f(n)) \) if for any constants \(c > 0 \), there exists constant \(n_0 > 0 \) such that \(T(n) < cf(n) \) for \(n \geq n_0 \)

Tools: amortization
An Extendable Array

Algorithm push(a):
input item a / array A
//output array A with a appended
if size() = N then
 new array of length f(N)
for i = 0 to N - 1
 B[i] = A[i]
A = B
N = f(N)
t = t + 1
A[t] = a
//return A

• How large should the new array be?
 - tight strategy (add a constant): f(N) = N + c
 - growth strategy (double up): f(N) = 2N

Analyzing Extendable Array

Tight vs. Growth Strategies

• To compare the two strategies, we use the following cost model:

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>RUN TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular push operation</td>
<td>1</td>
</tr>
<tr>
<td>special push operation</td>
<td>N+1</td>
</tr>
</tbody>
</table>
 - create an array of size f(N),
 copy N elements, and add one element

An Extendable Array

Step I.

Step II.

Step III.
Analyzing Extendable Array Growth Strategy

growth strategy (double up): \(f(N) = 2N \)

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>RUN TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>special push operation: create an array of size 2N, copy N elements, and add one element</td>
<td>(N + 1)</td>
</tr>
<tr>
<td>regular push operation: for the next (N - 1) elements</td>
<td>(N - 1)</td>
</tr>
<tr>
<td>Total time for (N) element addition</td>
<td>(2N)</td>
</tr>
</tbody>
</table>

\(f(n) \in O(n) \)

Performance of the Tight Strategy

tight strategy (constant increment): \(f(N) = N + C \)

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>RUN TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>special push operation: create an array of size (N + C), copy N elements, and add one element</td>
<td>(N + 1)</td>
</tr>
<tr>
<td>regular push operation: for the next (C - 1) elements</td>
<td>(C - 1)</td>
</tr>
<tr>
<td>Total time for (C) element addition</td>
<td>(N + C)</td>
</tr>
</tbody>
</table>

\(f(n) \in O(n^2) \)

Growth strategy wins!!

Tools: Proof by Induction

- Proof of Statement \(S(n) \) for all \(n \geq 1 \)
 - Step I: Show the base case.
 - say: \(S(k) \) is true for \(k = 1 \)
 - Step II: Show that if \(S(k) \) is true for \(1 \leq k \leq n \), then \(S(n+1) \) is true.
Proof by Induction

- Proof by Induction
 • ex: Prove that \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \) for all \(n \geq 1 \)

 Proof:

 Step I: \(\sum_{i=1}^{1} i^2 = \frac{k(k+1)(2k+1)}{6} \) for \(k = 1 \) is trivially true.

 Step II: Assume \(\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6} \) for all \(1 \leq k \leq n \).

 Show that \(\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6} \) for \(k + 1 \).

Math Fundamentals (continued)

Step II: if \(\sum_{i=1}^{k} i^2 = \frac{n(n+1)(2n+1)}{6} \), show \(\sum_{i=1}^{k+1} i^2 = \frac{(n+1)(n+2)(2(n+1)+1)}{6} \).

\[
\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2
= (n+1) \left(\frac{2n^2 + 7n + 6}{6} \right)
= \frac{(n+1)(n+2)(2(n+1)+1)}{6}
\]

Proof complete.

Lab Quiz 2

1. Prove by induction that \(\sum_{i=1}^{n} i^2 = \left(\sum_{i=1}^{n} i \right)^2 \) for all \(n \geq 1 \)

2. Compute the asymptotic growth time for an extendable table for which the array size is increased from \(N \) to the following possible values:
 a. \(N + \lceil \sqrt{N} \rceil \)
 b. \(N + \lceil \log N \rceil \)
Math Fundamentals (continued)

- Logarithms:
 - definition: \(\log_b x = y \) iff \(b^y = x \)
 - \(\log_b (xy) = \log_b x + \log_b y \)
 - \(\log_b \frac{x}{y} = \log_b x - \log_b y \)
 - \(\log_b y^c = c \log_b y \)
 - \(\log_b y = \frac{\log_{10} y}{\log_{10} b} \)

Merge Sort

- Merge-sort on an input sequence \(S \) with \(n \) elements consists of three steps:
 - Divide: partition \(S \) into two sequences \(S_1 \) and \(S_2 \) of about \(n/2 \) elements each
 - Recur: recursively sort \(S_1 \) and \(S_2 \)
 - Conquer: merge \(S_1 \) and \(S_2 \) into a unique sorted sequence

Algorithm mergeSort(S, C)
Input sequence \(S \) with \(n \) elements, comparator \(C \)
Output sequence \(S \) sorted according to \(C \)
if \(S.size > 1 \)
 \((S_1, S_2) \leftarrow partition(S, n/2) \)
 mergeSort(S_1, C)
 mergeSort(S_2, C)
 \(S \leftarrow merge(S_1, S_2) \)
Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences \(A \) and \(B \) into a sorted sequence \(S \) containing the union of the elements of \(A \) and \(B \).
- Merging two sorted sequences, each with \(n/2 \) elements, can be implemented by means of a doubly linked list, taking \(O(n) \) time.

Algorithm `merge(A, B)`

- Input: sequences \(A \) and \(B \) with \(n/2 \) elements each.
- Output: sorted sequence of \(A \cup B \).

```
S ← empty sequence
while ¬A.isEmpty ∧ ¬B.isEmpty
  if A.first < B.first
    S.insertLast(A.remove(A.first))
  else
    S.insertLast(B.remove(B.first))

while ¬A.isEmpty
  S.insertLast(A.remove(A.first))

while ¬B.isEmpty
  S.insertLast(B.remove(B.first))

return S
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree:
 - Each node represents a recursive call of merge-sort and stores
 - the unsorted sequence before the execution and its partition
 - the sorted sequence at the end of the execution
 - The root is the initial call.
 - The leaves are calls on subsequences of size 0 or 1.

Execution Example

- Partition
Execution Example (cont.)

• Recursive call, partition

Execution Example (cont.)

• Recursive call, partition

Execution Example (cont.)

• Recursive call, base case
Execution Example (cont.)

- Recursive call, base case

- Merge

Execution Example (cont.)

- Recursive call, ..., base case, merge
Execution Example (cont.)
• Merge

Execution Example (cont.)
• Recursive call, ..., merge, merge

Execution Example (cont.)
• Merge
Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is $O(n)$
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^i recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>size</th>
<th>seqs</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
<td>1</td>
<td>b_0</td>
</tr>
<tr>
<td>1</td>
<td>$n/2$</td>
<td>2</td>
<td>b_1</td>
</tr>
<tr>
<td>i</td>
<td>$n/2^i$</td>
<td>2^i</td>
<td>b_i</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Tools: Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with $n/2$ elements and implemented by means of a doubly linked list, takes at most b steps, for some constant b.
- Likewise, the basis case ($n < 2$) will take at most steps.
- Therefore, if we let $T(n)$ denote the running time of merge-sort:

$$T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}$$

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 - That is, a solution that has $T(n)$ only on the left hand side.

The Recursion Tree

- Draw the recursion tree for the recurrence relation and look for a pattern:

$$T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}$$

Total time = $bn + bn \log n$

(last level plus all previous levels)
Iterative Substitution

- In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern:

\[
T(n) = 2T(n/2) + bn
\]

\[
= 2(2T(n/2^2) + kn/2) + bn
\]

\[
= 2^2T(n/2^2) + 2bn
\]

\[
= 2^2T(n/2^3) + 3bn
\]

\[
= 2^2T(n/2^3) + 4bn
\]

\[
= 2^i T(n/2^i) + ibn
\]

- Note that base, \(T(n) = b \), case occurs when \(2^i = n \). That is, \(i = \log n \).

- So,

\[
T(n) = bn + bn \log n
\]

- Thus, \(T(n) \) is \(O(n \log n) \).

Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

- Guess: \(T(n) < cn \log n \).

\[
T(n) = 2T(n/2) + bn \log n
\]

\[
= 2c(n/2) \log(n/2) + bn \log n
\]

\[
= cn \log n - \log 2^i + bn \log n
\]

Wrong: we cannot make this last line be less than \(cn \log n \)

Guess-and-Test Method, Part 2

- Recall the recurrence equation:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

- Guess #2: \(T(n) < cn \log^2 n \).

\[
T(n) = 2T(n/2) + bn \log n
\]

\[
= 2c(n/2) \log^2(n/2) + bn \log n
\]

\[
= cn \log n - \log 2^{i+1} + bn \log n
\]

\[
\leq cn \log^2 n
\]

- if \(c > b \).

- So, \(T(n) \) is \(O(n \log^2 n) \).

In general, to use this method, you need to have a good guess and you need to be good at induction proofs.
Master Method

- Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}$$

- The Master Theorem:
 1. if \(f(n) = O(n^d \log^n n) \), then \(T(n) = \Theta(n^d \log^n n) \)
 2. if \(f(n) = \Theta(n^d \log^n n) \), then \(T(n) = \Theta(n^d \log^{n-\delta} n) \) for some \(\delta < 1 \)
 3. if \(f(n) = \Omega(n^d \log^{n+\epsilon} n) \), then \(T(n) = \Theta(n^d \log^{n-\epsilon} n) \)

Master Method, Example 1

- The form:

$$T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}$$

- The Master Theorem:
 1. if \(f(n) = O(n^d \log^n n) \), then \(T(n) = \Theta(n^d \log^n n) \)
 2. if \(f(n) = \Theta(n^d \log^n n) \), then \(T(n) = \Theta(n^d \log^{n-\delta} n) \) for some \(\delta < 1 \)
 3. if \(f(n) = \Omega(n^d \log^{n+\epsilon} n) \), then \(T(n) = \Theta(n^d \log^{n-\epsilon} n) \)

- Example:

$$T(n) = 4T(n/2) + n$$

Solution: \(\log_2 a = 2 \), so case 1 says \(T(n) = O(n^2) \).

Master Method, Example 2

- The form:

$$T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}$$

- The Master Theorem:
 1. if \(f(n) = O(n^d \log^n n) \), then \(T(n) = \Theta(n^d \log^n n) \)
 2. if \(f(n) = \Theta(n^d \log^n n) \), then \(T(n) = \Theta(n^d \log^{n-\delta} n) \) for some \(\delta < 1 \)
 3. if \(f(n) = \Omega(n^d \log^{n+\epsilon} n) \), then \(T(n) = \Theta(n^d \log^{n-\epsilon} n) \)

- Example:

$$T(n) = 2T(n/2) + n \log n$$

Solution: \(\log_2 a = 1 \), so case 2 says \(T(n) = O(n \log^2 n) \).
Master Method, Example 3

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]
- The Master Theorem:
 1. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(n^d \cdot \log^k n) \)
 2. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(n^d \cdot \log^{k-1} n) \)
 3. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(f(n)) \), provided \(a < \Theta(n^d) \) for some \(\delta < 1 \).
- Example:
 \[T(n) = 2T(n/3) + n \log n \]
 Solution: \(\log_2 a = 0 \), so case 3 says \(T(n) \) is \(O(n \log n) \).

Master Method, Example 4

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]
- The Master Theorem:
 1. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(n^d \cdot \log^k n) \)
 2. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(n^d \cdot \log^{k-1} n) \)
 3. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(f(n)) \), provided \(a \geq \Theta(n^d) \) for some \(\delta < 1 \).
- Example:
 \[T(n) = 2T(n/2) + n^2 \]
 Solution: \(\log_2 a = 3 \), so case 1 says \(T(n) \) is \(O(n^2) \).

Master Method, Example 5

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]
- The Master Theorem:
 1. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(n^d \cdot \log^k n) \)
 2. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(n^d \cdot \log^{k-1} n) \)
 3. If \(f(n) = \Theta(n^d \cdot \log^k n) \), then \(T(n) = \Theta(f(n)) \), provided \(a \geq \Theta(n^d) \) for some \(\delta < 1 \).
- Example:
 \[T(n) = 2T(n/3) + n^3 \]
 Solution: \(\log_3 a = 2 \), so case 3 says \(T(n) \) is \(O(n^3) \).
Master Method, Example 6

- The form: \[T(n) = \begin{cases} \frac{c}{d} & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \geq d \end{cases} \]

- The Master Theorem:
 1. If \(f(n) = \Theta(n^d \log^k n) \) then \(T(n) = \Theta(n^d \log^k n) \)
 2. If \(f(n) = \Theta(n^{d-1} \log^k n) \) then \(T(n) = \Theta(n^d \log^{k-1} n) \)
 3. If \(f(n) = \Theta(n^{d+\epsilon}) \) then \(T(n) = \Theta(n^d \log^{k-\frac{\epsilon}{1-\delta}}} \) for some \(\delta < 1 \).

- Example:
 \[T(n) = T(n/2) + 1 \] (binary search)
 Solution: \(\log a = 0 \), so case 2 says \(T(n) \) is \(\Theta(n \log n) \).

Master Method, Example 7

- The form: \[T(n) = \begin{cases} \frac{c}{d} & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \geq d \end{cases} \]

- The Master Theorem:
 1. If \(f(n) = \Theta(n^{d-1} \log^k n) \) then \(T(n) = \Theta(n^{d-1} \log^k n) \)
 2. If \(f(n) = \Theta(n^{d-1} \log^k n) \) then \(T(n) = \Theta(n^{d-1} \log^{k-1} n) \)
 3. If \(f(n) = \Theta(n^{d+\epsilon}) \) then \(T(n) = \Theta(n^{d} \log^{k-\frac{\epsilon}{1-\delta}}} \) for some \(\delta < 1 \).

- Example:
 \[T(n) = 2T(n/2) + \log n \] (heap construction)
 Solution: \(\log a = 1 \), so case 1 says \(T(n) \) is \(\Theta(n) \).

Iterative “Proof” of the Master Theorem

- Using iterative substitution, let us see if we can find a pattern:
 \[T(n) = aT(n/b) + f(n) \]
 \[= a^2T(n/b^2) + af(n/b) + f(n) \]
 \[= a^3T(n/b^3) + a^2f(n/b^2) + af(n/b) + f(n) \]
 \[= \cdots \]
 \[= a^{\log_b n}T(1) + \sum_{i=1}^{\log_b n} a^if(n/b^i) \]
 \[= nT(1) + \sum_{i=1}^{\log_b n} \frac{a^i}{b^i} \]

- We then distinguish the three cases as
 - The first term is dominant
 - Each part of the summation is equally dominant
 - The summation is a geometric series