Traditional Administration Definitions

- **Data Administration**: A high-level function that is responsible for the overall management of data resources in an organization, including maintaining corporate-wide definitions and standards.

- **Database Administration**: A technical function that is responsible for physical database design and for dealing with technical issues such as security enforcement, database performance, and backup and recovery.
Traditional Data Administration Functions

• Data policies, procedures, and standards.
• Planning.
• Data conflict (ownership) resolution.
• Managing the information repository.
 – Repositories contain the metadata that describes an organization’s data and data processing resources.
 – Information repositories are replacing data dictionaries in many organizations.
• Internal marketing of DA concepts.
Traditional Database Administration Functions

- Selection of DBMS and software tools.
- Installing/upgrading DBMS.
- Tuning database performance.
- Improving query processing performance.
- Managing data security, privacy, and integrity.
- Data backup and recovery.
Functions of DA and DBA

Database planning
- Develop corporate database strategy/policies
- Develop enterprise model (information architecture)
- Develop cost/benefit models
- Design database environment/select technologies
- Develop and market data administration plan

Database analysis
- Define and model data requirements (conceptual)
- Define and model business rules
- Define operational requirements
- Resolve requirements conflicts
- Maintain corporate data dictionary/repository

Database design
- Perform logical database design
- Design external model (subschemas)
- Design internal (physical) models
- Design integrity controls

Database implementation
- Specify database access policies
- Establish security controls
- Install DBMS
- Supervise database loading
- Specify test procedures
- Develop application programming standards
- Establish procedures for backup and recovery
- Conduct user training

Operations and maintenance
- Backup and recover databases
- Upgrade DBMS
- Monitor database performance
- Tune and reorganize databases
- Resolve access conflict
- Tune and rewrite queries
- Enforce standards and procedures
- Support users

Growth and change
- Implement change-control procedures
- Plan growth and change
- Evaluate new technology

DA = typically performed by data administration
DBA = typically performed by database administration
Evolving Approaches to Data Administration

• Blend data and database administration into one role.
• Fast-track development – monitoring development process (analysis, design, implementation, maintenance).
• Procedural DBAs–managing quality of triggers and stored procedures.
• eDBA–managing Internet-enabled database applications.
• PDA DBA–data synchronization and personal database management.
• Data warehouse administration.
Data Warehouse Administration

• New roles, coming with the growth in data warehouses.
• Similar to DA/DBA roles.
• Emphasis on integration and coordination of metadata/data across many data sources.
• Specific roles:
 – Support DSS applications.
 – Manage data warehouse growth.
 – Establish service level agreements regarding data warehouses and data marts.
Open Source DBMSs

• An alternative to proprietary packages such as Oracle, Microsoft SQL Server, or Microsoft Access
• MySQL is an example of open-source DBMS
• Less expensive than proprietary packages
• Source code available, for modification
Data modeling responsibilities

Metadata

Data Administration

Build

Build

Enterprise Data Model

Conceptual Data Model

Planning

Analysis

Data

Database Administration

Use

Transform

Logical Data Model

Physical Data Model

Logical Design

Physical Design
Database Security

- **Database Security**: Protection of the data against accidental or intentional loss, destruction, or misuse.
- Increased difficulty due to Internet access and client/server technologies.
Possible locations of data security threats
Threats to Data Security

• Accidental losses attributable to:
 – Human error
 – Software failure
 – Hardware failure

• Theft and fraud

• Improper data access:
 – Loss of privacy (personal data)
 – Loss of confidentiality (corporate data)

• Loss of data integrity

• Loss of availability (through, e.g. sabotage)
Types of Threats - Interruption

- **Interruption**
 - An asset of the system is destroyed or becomes unavailable or unusable
 - Attack on availability
 - Destruction of hardware
 - Cutting of a communication line
 - Disabling the file management system
Types of Threats - Interception

- **Interception**
 - An unauthorized party gains access to an asset
 - Attack on confidentiality
 - Wiretapping to capture data in a network
 - Illicit copying of files or programs
Types of Threats - Modification

- **Modification**
 - An unauthorized party not only gains access but tampers with an asset
 - Attack on integrity
 - Changing values in a data file
 - Altering a program so that it performs differently
 - Modifying the content of messages being transmitted in a network
Types of Threats - Fabrication

• Fabrication
 – An unauthorized party inserts counterfeit objects into the system
 – Attack on authenticity
 – Insertion of spurious messages in a network
 – Addition of records to a file
Establishing Internet Security

Public Client

WWW TCP/IP

Firewall

Router

Web Farm

Intrusion Detection System

Business Systems
Web Security

• Static HTML files are easy to secure
 – Standard database access controls
 – Place Web files in protected directories on server

• Dynamic pages are harder
 – Control of CGI scripts
 – User authentication
 – Session security
 – SSL for encryption
 – Restrict number of users and open ports
 – Remove unnecessary programs
W3C Web Privacy Standard

• Platform for Privacy Protection (P3P)
• Addresses the following:
 – Who collects the data.
 – What data is collected and for what purpose.
 – Who shares the data.
 – Can users control access to their data.
 – How are disputes resolved.
 – Policies for retaining data.
 – Where are policies kept and how can they be accessed.
Database Software Security Features

- Views or subschemas
- Integrity controls
- Authorization rules
- User-defined procedures
- Encryption
- Authentication schemes
- Backup, journalizing, and checkpointing
Views and Integrity Controls

• Views
 – Subset of the database that is presented to one or more users
 – User can be given access privilege to view without allowing access privilege to underlying tables

• Integrity Controls
 – Protect data from unauthorized use
 – Domains—set allowable values
 – Assertions—enforce database conditions
Authorization Rules

• Controls incorporated in the data management system

• Restrict:
 – access to data
 – actions that people can take on data

• Authorization matrix for:
 – Subjects
 – Objects
 – Actions
 – Constraints
An Example Authorization Matrix

<table>
<thead>
<tr>
<th>Subject</th>
<th>Object</th>
<th>Action</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Dept.</td>
<td>Customer record</td>
<td>Insert</td>
<td>Credit limit LE $5000</td>
</tr>
<tr>
<td>Order trans.</td>
<td>Customer record</td>
<td>Read</td>
<td>None</td>
</tr>
<tr>
<td>Terminal 12</td>
<td>Customer record</td>
<td>Modify</td>
<td>Balance due only</td>
</tr>
<tr>
<td>Acctg. Dept.</td>
<td>Order record</td>
<td>Delete</td>
<td>None</td>
</tr>
<tr>
<td>Ann Walker</td>
<td>Order record</td>
<td>Insert</td>
<td>Order aml LT $2000</td>
</tr>
<tr>
<td>Program AR4</td>
<td>Order record</td>
<td>Modify</td>
<td>None</td>
</tr>
</tbody>
</table>
Some DBMSs also provide capabilities for user-defined procedures to customize the authorization process.
Basic two-key encryption

Encryption – the coding or scrambling of data so that humans cannot read them

Secure Sockets Layer (SSL) is a popular encryption scheme for TCP/IP connections.
Authentication Schemes

• Goal – obtain a positive identification of the user

• Passwords: First line of defense
 – Should be at least 8 characters long
 – Should combine alphabetic and numeric data
 – Should not be complete words or personal information
 – Should be changed frequently
Authentication Schemes (cont.)

- **Strong Authentication**
 - Passwords are flawed:
 - Users share them with each other
 - They get written down, could be copied
 - Automatic logon scripts remove need to explicitly type them in
 - Unencrypted passwords travel the Internet

- **Possible solutions:**
 - Two factor—e.g. smart card plus PIN
 - Three factor—e.g. smart card, biometric, PIN
 - Biometric devices—use of fingerprints, retinal scans, etc. for positive ID
 - Third-party mediated authentication—using secret keys, digital certificates
Security Policies and Procedures

• Personnel controls
 – Hiring practices, employee monitoring, security training

• Physical access controls
 – Equipment locking, check-out procedures, screen placement

• Maintenance controls
 – Maintenance agreements, access to source code, quality and availability standards

• Data privacy controls
 – Adherence to privacy legislation, access rules
Database Recovery

- Mechanism for restoring a database quickly and accurately after loss or damage

- Recovery facilities:
 - Backup Facilities
 - Journalizing Facilities
 - Checkpoint Facility
 - Recovery Manager
Back-up Facilities

- Automatic dump facility that produces backup copy of the entire database
- Periodic backup (e.g. nightly, weekly)
- Cold backup—database is shut down during backup
- Hot backup—selected portion is shut down and backed up at a given time
- Backups stored in secure, off-site location
Journalizing Facilities

- Audit trail of transactions and database updates
 - Transaction log—record of essential data for each transaction processed against the database
 - Database change log—images of updated data
 - Before-image—copy before modification
 - After-image—copy after modification

Produces an **audit trail**
Database audit trail

From the backup and logs, databases can be restored in case of damage or loss.
Checkpoint Facilities

- DBMS periodically refuses to accept new transactions
- Therefore, system is in a *quiet* state
- Database and transaction logs are synchronized

This allows recovery manager to resume processing from short period, instead of repeating entire day
Recovery and Restart Procedures

- Disk Mirroring—switch between identical copies of databases.
- Restore/Rerun—reprocess transactions against the backup.
- Transaction Integrity—commit or abort all transaction changes.
- Backward Recovery (Rollback)—apply before images.
- Forward Recovery (Roll Forward)—apply after images (preferable to restore/rerun).
Transaction ACID Properties

• Atomic
 – Transaction cannot be subdivided

• Consistent
 – Constraints don’t change from before transaction to after transaction

• Isolated
 – Database changes not revealed to users until after transaction has completed

• Durable
 – Database changes are permanent
Basic recovery techniques - Rollback

- Database (with changes)
- Before-images
- Database (without changes)

DBMS
Basic recovery techniques - Rollforward

Diagram:
- Database (without changes)
- After-images
- DBMS
- Database (with changes)
Database Failure Responses

• **Aborted transactions**
 – Preferred recovery: rollback
 – Alternative: Rollforward to state just prior to abort

• **Incorrect data**
 – Preferred recovery: rollback
 – Alternative 1: rerun transactions not including inaccurate data updates
 – Alternative 2: compensating transactions

• **System failure (database intact)**
 – Preferred recovery: switch to duplicate database
 – Alternative 1: rollback
 – Alternative 2: restart from checkpoint

• **Database destruction**
 – Preferred recovery: switch to duplicate database
 – Alternative 1: rollforward
 – Alternative 2: reprocess transactions
Concurrency Control

• **Problem**—in a multi-user environment, simultaneous access to data can result in interference and data loss.

• **Solution**—**Concurrency Control**

 – The process of managing simultaneous operations against a database so that data integrity is maintained and the operations do not interfere with each other in a multi-user environment.
Lost update (no concurrency control in effect)

Simultaneous access causes updates to cancel each other.

A similar problem is the **inconsistent read** problem.
Concurrency Control Techniques

• Serializability
 – Finish one transaction before starting another

• Locking Mechanisms
 – The most common way of achieving serialization
 – Data that is retrieved for the purpose of updating is locked for the updater
 – No other user can perform update until unlocked
Updates with locking (concurrency control)

This prevents the lost update problem
Locking Mechanisms

• Locking level:
 – Database—used during database updates
 – Table—used for bulk updates
 – Block or page—very commonly used
 – Record—only requested row; fairly commonly used
 – Field—requires significant overhead; impractical

• Types of locks:
 – Shared lock—Read but no update permitted. Used when just reading to prevent another user from placing an exclusive lock on the record
 – Exclusive lock—No access permitted. Used when preparing to update
Deadlock

- An impasse that results when two or more transactions have locked common resources, and each waits for the other to unlock their resources.

The problem of deadlock

John and Marsha will wait forever for each other to release their locked resources!
Managing Deadlock

• Deadlock prevention:
 – Lock all records required at the beginning of a transaction
 – Two-phase locking protocol
 • Growing phase
 • Shrinking phase
 – May be difficult to determine all needed resources in advance

• Deadlock Resolution:
 – Allow deadlocks to occur
 – Mechanisms for detecting and breaking them
 • Resource usage matrix
Versioning

• Optimistic approach to concurrency control
• Instead of locking
• Assumption is that simultaneous updates will be infrequent
• Each transaction can attempt an update as it wishes
• The system will reject an update when it senses a conflict
• Use of rollback and commit for this
Versioning

Better performance than locking
Managing Data Quality

• Causes of poor data quality
 – External data sources
 – Redundant data storage
 – Lack of organizational commitment

• Data quality improvement
 – Perform data quality audit
 – Establish data stewardship program (data steward is a liaison between IT and business units)
 – Apply total quality management (TQM) practices
 – Overcome organizational barriers
 – Apply modern DBMS technology
 – Estimate return on investment
Data Dictionaries and Repositories

• Data dictionary
 – Documents data elements of a database

• System catalog
 – System-created database that describes all database objects

• Information Repository
 – Stores metadata describing data and data processing resources

• Information Repository Dictionary System (IRDS)
 – Software tool managing/controlling access to information repository
Three components of the repository system architecture

A schema of the repository information

Software that manages the repository objects

Where repository objects are stored
Database Performance Tuning

• DBMS Installation
 – Setting installation parameters

• Memory Usage
 – Set cache levels
 – Choose background processes

• Input/Output (I/O) Contention
 – Use striping
 – Distribution of heavily accessed files

• CPU Usage
 – Monitor CPU load

• Application tuning
 – Modification of SQL code in applications
Data Availability

• Downtime is expensive
• How to ensure availability
 – Hardware failures—provide redundancy for fault tolerance
 – Loss of data—database mirroring
 – Maintenance downtime—automated and nondisruptive maintenance utilities
 – Network problems—careful traffic monitoring, firewalls, and routers