Recap
Interest point detection
Recap Possible Approaches

- Based on brightness of images
 - Usually image derivatives
- Based on boundary extraction
 - First step edge detection
 - Curvature analysis of edges

Recap Harris Corner Detector

- Corner point can be recognized in a window
- Shifting a window in any direction should give a large change in intensity

\[E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u+u+y+v) - I(x,y) \right]^2 \]

\[E(u,v) = (u \ v)M\begin{pmatrix} u \\ v \end{pmatrix} \quad M = \sum_{x,y} w(x,y) \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix} \]

\[R = \det M - k(\text{trace}M)^2 \]

SUSAN Detector

- Proposed by Smith and Brady in 1995
- SUSAN stands for Smallest “Univalue Segment Assimilating Nucleus (USAN)”
- It doesn’t use any derivatives
- It is based on the fact that each point within an image is associated with it a local area of comparable brightness

Principle

- Considered in a circular mask around a pixel
- Comparison of intensity in a neighborhood
 - Area with similar intensities is called USAN
- Repeat the procedure for each pixel

The SUSAN Detector

- USAN area varies with respect to features of the image
- USAN area
 - is maximum within the rectangular area
 - falls to a minimum at an edge
 - smaller value corresponding to a local minimum at a corner
- This is the property upon which the corner finder algorithm is based

Algorithm

1. Determine a circular mask
 - Typically 37 pixels around each pixel (nucleus)
2. Calculate the brightness difference between each pixel in the mask with its nucleus
 \[c(r, r_0) = \begin{cases}
 1 & \text{if } |I(r) - I(r_0)| \leq t \\
 0 & \text{otherwise}
 \end{cases} \]
3. Sum the number of pixels with similar intensity levels to that of the nucleus
 \[n(r_0) = \sum_r c(r, r_0) \]
Algorithm

4. Compare n with g, the geometric threshold which is set to half of the maximum value that n can be ($n_{\text{max}}/2$)

5. At a perfect corner the USAN area will always be less than half the size of the mask area, and will be a local minimum

$$R(r_0) = \begin{cases}
 g - n(r_0) & \text{if } n(r_0) < g \\
 0 & \text{otherwise}
\end{cases}$$

Problems

- Strong edges and noise results in false detection
- (Left figure) The USAN is not continuous. Obviously nucleus is not a corner, even though the function shows it is the local maxima.
- (Right figure) Nucleus lies in a long thin area, which depicts USAN is also very small. However, the value is high, which contradicts the fact that the point in question is not a corner.
Improving SUSAN Detector

- Two rules
 - Find centroid of USAN area and distance from nucleus. point cannot become a corner if the distance is small.
 - One of the pixels on the line connecting centroid to center of circular region can be a corner

Benefits

- Accuracy, speed and localization

Output of the SUSAN corner detector ($t=10$) given the test image. (0.3 sec)

Output of the Plessey corner detector ($o=2.0$) given the test image. (3.5 sec)
SIFT - Key Point Extraction

- Stands for scale invariant feature transform
- Patented by university of British Columbia
- Similar to the one used in primate visual system (human, ape, monkey, etc.)
- Transforms image data into scale-invariant coordinates

Goal

- Extracting distinctive invariant features
 - Correctly matched against a large database of features from many images
- Invariance to image scale and rotation
- Robustness to
 - Affine distortion,
 - Change in 3D viewpoint,
 - Addition of noise,
 - Change in illumination.
Advantages

- **Locality**: features are local, so robust to occlusion and clutter
- **Distinctiveness**: individual features can be matched to a large database of objects
- **Quantity**: many features can be generated for even small objects
- **Efficiency**: close to real-time performance
- **Extensibility**: can easily be extended to wide range of differing feature types, with each adding robustness

Invariant Local Features
Steps for Extracting Key Points

- Scale space peak selection
 - Potential locations for finding features
- Key point localization
 - Accurately locating the feature key
- Orientation Assignment
 - Assigning orientation to the keys
- Key point descriptor
 - Describing the key as a high dimensional vector

Building a Scale Space

- All scales must be examined to identify scale-invariant features
- An efficient function is to compute the Laplacian Pyramid (Difference of Gaussian) (Burt & Adelson, 1983)

![Diagram of building a scale space](image-url)
Building a Scale Space

\[G(x, y, k\sigma) = \frac{1}{2\pi(k\sigma)^2} e^{-\frac{(x^2 + y^2)}{2(k\sigma)^2}} \]

\(k\) is the number of chosen scale in each octave.

Scale Space Peak Detection

- Compare a pixel (\(X\)) with 26 pixels in current and adjacent scales (Green Circles)
- Select if larger/smaller than all 26 pixels
- Large number of extrema, computationally expensive
 - Detect the most stable subset with a coarse sampling of scales
Key Point Localization

- Candidates are chosen from extrema detection

![Original Image](image1.png) ![Extrema Locations](image2.png)

Initial Outlier Rejection

- Low contrast candidates
- Poorly localized candidates along an edge
- Taylor series expansion of DOG, D.

$$D(x) = D + \frac{\partial D^T}{\partial x} x + \frac{1}{2} x^T \frac{\partial^2 D}{\partial x^2} x$$

$x = (x, y, \sigma)^T$

- Minima or maxima is located at $\hat{x} = -\frac{\partial^2 D}{\partial x^2}^{-1} \frac{\partial D}{\partial x}$

- Value of $D(x)$ at minima/maxima must be large, $|D(x)| > th$.
Initial Outlier Rejection

from 832 key points to 729 key points, \(\theta = 0.03 \).

Further Outlier Rejection

- DOG has strong response along edge
- Assume DOG as a surface
 - Compute principal curvatures (PC)
 - Along the edge one of the PC is very low
Principal Curvatures

- Notion from differential geometry
- They measure maximum and minimum bending of a surface
- Principal curvatures can be computed from Hessian of the surface

<table>
<thead>
<tr>
<th>$K > 0$</th>
<th>$K = 0$</th>
<th>$K < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H < 0$</td>
<td>peak</td>
<td>ridge</td>
</tr>
<tr>
<td>$H = 0$</td>
<td>plane</td>
<td>flat</td>
</tr>
<tr>
<td>$H > 0$</td>
<td>pt</td>
<td>valley</td>
</tr>
</tbody>
</table>

Hessian Matrix

- Jacobian matrix of the derivatives of a function is called Hessian

$$H(f(x_1, ..., x_n)) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}$$
Further Outlier Rejection

- Analogous to Harris corner detector
- Compute Hessian of D

\[H = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \]

- Find eigenvalues \(\lambda_1, \lambda_2 \)
- Remove outliers by evaluating

\[\frac{\text{Tr}(H)^2}{\text{Det}(H)} < \frac{(r + 1)^2}{r} \]

Further Outlier Rejection

from 729 key points to 536 key points.
Orientation Assignment

- To achieve rotation invariance
- Computed from Gaussian smoothed image at the scale of key point \((x, y)\)
- Compute central derivatives, gradient magnitude and direction

\[
m(x, y) = \sqrt{(L(x + 1, y) - L(x - 1, y))^2 + (L(x, y + 1) - L(x, y - 1))^2}
\]
\[
\theta(x, y) = \tan^{-1}\left(\frac{L(x, y + 1) - L(x, y - 1)}{L(x + 1, y) - L(x - 1, y)}\right)
\]

Orientation Assignment

- Create a weighted direction histogram in a neighborhood of a key point (36 bins)
- Weights are
 - Gradient magnitudes
 - Spatial gaussian filter with \(\sigma = 1.5 \times \text{scale of key point}\)
Orientation Assignment

- Select the peak as direction of the key point
- Introduce additional key points (same location) at local peaks of the histogram with different directions

Local Image Descriptors at Key Points

- Possible descriptor
 - Store samples in the neighborhood
 - Sensitive to lighting changes, 3D object transformation
- Use of gradient orientation histograms
 - Robust representation
Similarity to IT cortex

- Complex neurons respond to a gradient at a particular orientation.
- Location of the feature can shift over a small receptive field.
- Edelman, Intrator, and Poggio (1997) hypothesized that the function of the cells allow for matching and recognition of 3D objects from a range of viewpoints.
- Experiments show better recognition accuracy for 3D objects rotated in depth by up to 20 degrees.

Extraction of Local Image Descriptors at Key Points

- Compute relative orientation and magnitude in a 16x16 neighborhood at key point
- Form weighted histogram for 4x4 regions
 - Weight by magnitude and spatial Gaussian
 - Example for 8x8 to 2x2 descriptors
Extraction of Local Image Descriptors at Key Points

- Store numbers in a vector
- Normalize to unit vector (UN)
 - Illumination invariance (affine changes)
- For non-linear intensity transforms
 - Bound UN items to maximum .2
 - Renormalize to unit vector

Key point matching

- Match the key points against a database of that obtained from training images.
- Find the nearest neighbor i.e. a keypoint with minimum Euclidean distance.
 - Efficient Nearest Neighbor matching
 - Best bin first algorithm: a modification of k-d tree search
 - Looks at ratio of distance between best and 2nd best match
1st Programming Project Assignment

- Implementation of SIFT key point detector
- Due date 27 February, 2006
- Deliverables:
 - Source code on a CD,
 - Project report discussing problems encountered, where the algorithm fails,
 - Images of intermediate steps
- Classroom demo is required on an unknown set of images
- Program should display computed features
- A comparison with the author's program (only executable) should show if your algorithm fails
- Look at the IJCV paper by D. Lowe