Edge Detection

Figure 2.20: (a) The bottle image. (b) The edge map from the Canny edge detector.
Edge Detectors

- Gradient operators: Sobel, Prewit, Robert
- Laplacian of Gaussian (Marr-Hildreth)
- Gradient of Gaussian (Canny)
- Facet Model Based Edge Detector (Haralick)

Laplacian of Gaussian Edge Detector

- Generate a mask for LG for a given
- Apply mask to the image
- Detect zero crossings
 - Scan along each row, record an edge point at the location of zero crossing.
 - Repeat above step along each column
Laplacian of Gaussian

\[g(x, y) = e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\frac{\partial}{\partial x} g(x, y) = \left(\frac{\partial}{\partial x} \right) e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\frac{\partial^2}{\partial x^2} g(x, y) = \left(\frac{\partial^2}{\partial x^2} \right) e^{-\frac{(x^2 + y^2)}{2\sigma^2}} + \left(\frac{\partial}{\partial x} \right)^2 e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\frac{\partial^2}{\partial x^2} g(x, y) = \frac{1}{\sigma^2} (1 - \frac{x^2}{\sigma^2}) e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

Laplacian of Gaussian

\[g_{xx} = \frac{\partial^2}{\partial x^2} g(x, y) = \left(\frac{\partial^2}{\partial x^2} \right) \left(1 - \frac{x^2}{\sigma^2} \right) e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[g_{yy} = \frac{\partial^2}{\partial y^2} g(x, y) = \left(\frac{\partial^2}{\partial y^2} \right) \left(1 - \frac{y^2}{\sigma^2} \right) e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\nabla^2 g(x, y) = \frac{\partial^2}{\partial x^2} g(x, y) + \frac{\partial^2}{\partial y^2} g(x, y) \]

\[= \left(\frac{1}{\sigma^2} \left(1 - \frac{x^2}{\sigma^2} \right) \right) e^{-\frac{(x^2 + y^2)}{2\sigma^2}} + \left(\frac{1}{\sigma^2} \left(1 - \frac{y^2}{\sigma^2} \right) \right) e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\nabla^2 g(x, y) = \frac{1}{\sigma^2} \left(2 - \frac{x^2 + y^2}{\sigma^2} \right) e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]
Zerocrossings

- Four cases of zerocrossings: {+, -}, {+, 0, -}, {-, +}, {-, 0, +}
- Slope of zerocrossing \{a, -b\} is \(|a+b|\).
- To detect zerocrossing apply threshold to the slope. If the slope is above some threshold, then that point is an edge point.

Gaussian

\[g(x) = e^{\frac{-x^2}{2\sigma^2}} \]

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>g(x)</td>
<td>.011</td>
<td>.13</td>
<td>.6</td>
<td>1</td>
<td>.6</td>
<td>.13</td>
<td>.011</td>
</tr>
</tbody>
</table>

Standard deviation
2-D Gaussian

\[g(x, y) = e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\sigma = 2 \]
Convolution

\[h(x, y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} f(x+i, y+j)g(i, j) \]

\[h(x, y) = f(x, y) * g(x, y) \]
Separability of Gaussian

\[h(x, y) = f(x, y) \ast g(x, y) \]

Requires \(n^2 \) multiplications for a \(n \times n \) mask, for each pixel.

\[h(x, y) = (f(x, y) \ast g(x)) \ast g(y) \]

This requires \(2n \) multiplications for a \(n \times n \) mask, for each pixel.

Separability of Laplacian of Gaussian

\[h(x, y) = f(x, y) \ast \nabla^2 g(x, y) \]

Requires \(n^2 \) multiplications for a \(n \times n \) mask, for each pixel.

\[h(x, y) = (f(x, y) \ast g_{xx}(x)) \ast g(y) + (f(x, y) \ast g_{yy}(y)) \ast g(x) \]

This requires \(4n \) multiplications for a \(n \times n \) mask, for each pixel.
Separability

Decomposition of LG into four 1-D convolutions
- Convolve the image with a second derivative of Gaussian mask $g_{yy}(y)$ along each column.
- Convolve the resultant image from step (1) by a Gaussian mask $g(x)$ along each row. Call the resultant image I_x.
- Convolve the original image with a Gaussian mask, $g(y)$ along each column.
- Convolve the resultant image from step (3) by a second derivative of Gaussian mask $g_{xx}(x)$ along each row. Call the resultant image I_y.
- Add I_x and I_y.
Canny Edge Detector

- Compute the gradient of image $f(x,y)$ by convolving it with the first derivative of Gaussian masks in x and y directions.
- Perform non-maxima suppression on the gradient magnitude.
- Apply hysteresis thresholding to the non-maxima suppressed magnitude.

Canny Edge Detector

$$f_x(x,y) = f(x,y) * g_x(x,y) = (f(x,y) * g_x(x)) * g(y)$$

$$f_y(x,y) = f(x,y) * g_y(x,y) = (f(x,y) * g_y(y)) * g(x)$$

(f_x, f_y) Gradient Vector

magnitude $= \sqrt{f_x^2 + f_y^2}$

direction $= \theta = \tan^{-1} \frac{f_y}{f_x}$
Non-maxima Suppression

- Suppress the pixels which are not local maxima.

\[M(x, y) = \begin{cases}
M(x, y) & \text{if } M(x, y) > M(x, y') \land M(x, y) > M(x, y'') \\
0 & \text{otherwise}
\end{cases} \]

Quantization in Eight Possible Directions

\((f_x, f_y)\) Gradient Vector

magnitude = \[\sqrt{f_x^2 + f_y^2}\]

direction = \[\theta = \tan^{-1}\left(\frac{f_y}{f_x}\right)\]
Hysteresis Thresholding

- Scan the image from left to right, top-bottom. If
 - The gradient magnitude at a pixel is above a high threshold declare that as an edge point
 - Then recursively consider the neighbors of this pixel.
- If the gradient magnitude is above the low threshold declare that as an edge pixel.
Connectedness

(a) 4-connected. (b) 8-connected. (c) 6-connected.

Connected Component

4
Connected Component

1. Scan the binary image left to right, top to bottom.

2. If there is an unlabeled pixel with a value of ‘1’ assign a new label to it.

3. Recursively check the neighbors of the pixel in step 2 and assign the same label if they are unlabeled with a value of ‘1’.

4. Stop when all the pixels of value ‘1’ have been labeled.

Figure 3.7: Recursive Connected Component Algorithm.
1. Scan the binary image left to right, top to bottom.

2. If an unlabeled pixel has a value of '1', assign a new label to it according to the following rules:

 | 0 | 0 | 0 | 0 |
 | 0 | 1 | 1 | 0 |
 | 0 | 0 | 0 | 0 |
 | 0 | 0 | 1 | 0 |
 | 1 | 1 | 1 | 0 |

 | 0 | 0 | a | 0 |
 | b | 0 | a | a |
 | 0 | 0 | 0 | 0 |
 | 0 | 0 | c | c |
 | d | c | c | 0 |

3. Determine equivalence classes of labels.

4. In the second pass, assign the same label to all elements in an equivalence class.

Figure 3.8: Sequential Connected Component Algorithm.
Recursive

	0	0	1	0																
1				1																
	0	0	0	0																
0				1																
0				1																
1				1																

	0	0	a	0																	
0				b																	
	0	0	0	0																	
0				0																	
0				0																	
0				0																	
0				0																	

	0	0	a	0																	
0				b																	
	0	0	0	0																	
0				0																	
0				0																	
0				0																	
0				0																	
0				0																	