1. [15 points] Given an alphabet \(A = (a_1, a_2, a_3, a_4) \) with probabilities
 \[p(a_1) = 0.2, \quad p(a_2) = 0.3, \quad p(a_3) = 0.15, \quad p(a_4) = 0.35 \]
 find a Huffman code using the first procedure presented in the class and then a
 Huffman code with minimum variance. What is the practical significance of
 finding a minimum variance code?

2. [25 points] Given all the probability of symbols in the alphabet, if every pair of
 symbols are combined to be one and form a new alphabet, will the compression
 ratio be better or worse? Justify it. Compare the n-gram based Huffman coding (if
 n-symbols are represented by one) with single-symbol probability based Huffman
 coding.

3. [30 points] Construct a canonical Huffman code for the following lengths of code
 for an alphabet of 26 symbols:
 2 (letters q and z) codes of length 7, 3 (letters j,k,x) of codes of length 6, 14
 (letters v,g,w,b,y,p,f,m,u,c,l,d,s,h) codes of length 5, 6 (letters i,r,o,a,t) codes
 for the length of 4 and 1 (letter e) code of length 3. Give a code for a message
 ‘compression’ and show how the decoding operation will proceed. Then take a bit
 string ‘001101101011’. Will this decode to a valid string?

4. [30 points] Derive the time and storage complexity of encoding and decoding of a
 minimum variance Huffman code given \(n \) probability values. Do the same for
 canonical Huffman code given \(n \) length values. Be precise in writing the
 algorithms and deriving the complexity results.