Solution 4.6.3.1

The characteristic equation is

\[1 + \frac{K(s + 1)}{(s - 2)(s + 2)} = 0, \]

which can be rewritten as

\[\frac{s^2 - 4 + Ks + K}{(s - 2)(s + 2)} = 0, \]

or

\[s^2 + Ks + (K - 4) = 0. \]

The initial Routh table is

\(s^2 \)	1	K-4	0
\(s^1 \)	K	0	0
\(s^0 \)	\(b_1 \)	\(b_2 \)	0

Then

\[b_1 = \frac{-\text{Det} \begin{bmatrix} 1 & K-4 \\ K & 0 \end{bmatrix}}{K} = \frac{-(0 - K(K - 4))}{K} = K - 4, \]

\[b_2 = \frac{-\text{Det} \begin{bmatrix} 1 & 0 \\ K & 0 \end{bmatrix}}{K} = \frac{-(0 - 0)}{K} = 0 \]

\[b_3 = \frac{-\text{Det} \begin{bmatrix} 1 & 0 \\ K & 0 \end{bmatrix}}{K} = \frac{-(0 - 0)}{K} = 0 \]

The completed Routh table is

\(s^2 \)	1	K-4	0
\(s^1 \)	K	0	0
\(s^0 \)	\(K - 4 \)	0	0

For all the terms in the first column to be positive we must have

\[K > 0 \quad \text{and} \quad (K - 4) > 0, \]

or, equivalently

\[K > 4. \]
Solution 4.6.3.4

The characteristic equation is

\[1 + \frac{K}{s(s + 10)(s + 50)} = 0, \]

which can be rewritten as

\[\frac{s^3 + 60s^2 + 500s + K}{s(s + 10)(s + 50)} = 0, \]

or

\[s^3 + 60s^2 + 500s + K = 0. \]

The initial Routh table is

<table>
<thead>
<tr>
<th>s^3</th>
<th>1</th>
<th>500</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^2</td>
<td>60</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>s^1</td>
<td>b_1</td>
<td>b_2</td>
<td>0</td>
</tr>
<tr>
<td>s^0</td>
<td>c_1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Then

\[b_1 = \frac{-\text{Det} \begin{bmatrix} 1 & 500 \\ 60 & K \end{bmatrix}}{60} = \frac{-(K - 30,000)}{60} \]

\[b_2 = \frac{-\text{Det} \begin{bmatrix} 1 & 0 \\ 60 & 0 \end{bmatrix}}{60} = \frac{-(0 - 0)}{60} = 0 \]

The partially completed Routh table is

<table>
<thead>
<tr>
<th>s^3</th>
<th>1</th>
<th>500</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^2</td>
<td>60</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>s^1</td>
<td>-(K - 30,000)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s^0</td>
<td>c_1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Then

\[c_1 = \frac{-\text{Det} \begin{bmatrix} 60 & K \\ -(K - 30,000) & 0 \end{bmatrix}}{-(K - 30,000)} = K \]

The completed Routh table is

1
<table>
<thead>
<tr>
<th>s^3</th>
<th>1</th>
<th>500</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^2</td>
<td>60</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>s^1</td>
<td>$(K-30,000)$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s^0</td>
<td>K</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

For all the terms in the first column to be positive we must have

$$\frac{-(K - 30,000)}{60} > 0 \quad \text{and} \quad K > 0,$$

or, equivalently

$$0 < K < 30,000.$$
Solution 4.6.3.11

The characteristic equation is

\[1 + \frac{K}{s^2(s + 10)} = 0, \]

which can be rewritten as

\[\frac{s^3 + 10s^2 + 0s + K}{s^3 + 10s^2} = 0, \]

or

\[s^3 + 10s^2 + 0s + K = 0. \]

The initial Routh table is

\[
\begin{array}{ccc}
 s^3 & 1 & 0 & 0 \\
 s^2 & 10 & K & 0 \\
 s^1 & b_1 & b_2 & 0 \\
 s^0 & c_1 & 0 & 0 \\
\end{array}
\]

Then

\[b_1 = \frac{-\text{Det} \begin{bmatrix} 1 & 0 \\ 10 & K \end{bmatrix}}{10} \]

\[= \frac{-K}{10} \]

\[b_2 = \frac{-\text{Det} \begin{bmatrix} 1 & 0 \\ 10 & 0 \end{bmatrix}}{52} \]

\[= \frac{-(0 - 0)}{10} \]

\[= 0 \]

The partially completed Routh table is

\[
\begin{array}{ccc}
 s^3 & 1 & 0 & 0 \\
 s^2 & 10 & K & 0 \\
 s^1 & -\frac{K}{10} & 0 & 0 \\
 s^0 & c_1 & 0 & 0 \\
\end{array}
\]
Then

\[c_1 = \frac{-\text{Det} \begin{bmatrix} 10 & K \\ \frac{-K}{10} & 0 \end{bmatrix}}{\frac{-K}{10}} = \frac{-(0 + K^2)}{\frac{-K}{10}} = 10K. \]

The completed Routh table is

<table>
<thead>
<tr>
<th>(s^3)</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s^2)</td>
<td>10</td>
<td>(-K)</td>
<td>0</td>
</tr>
<tr>
<td>(s^1)</td>
<td>(\frac{-K}{10})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(s^0)</td>
<td>10K</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

For all the terms in the first column to be positive we must have

\[\frac{-K}{10} > 0 \quad \text{and} \quad 10K > 0. \]

Since \(K \) cannot be both greater than zero and less than zero, this system is unstable for all values of \(K \). We will see why in Chapter 5.
Solution 4.6.4.1

The closed loop transfer function is

\[
\frac{K(s+1)}{s^2} = \frac{K(s+1)}{s^2 + Ks + K}.
\]

The characteristic equation is

\[
s^2 + Ks + K = 0.
\]

The MATLAB program

```matlab
K = 2
p=[1 K K]
roots(p)
K = 4
p=[1 K K]
roots(p)
K = 20
p=[1 K K]
roots(p)
K=[2 40 20]
gh = zpk([],[-1 -10],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl4641.eps
```

generates the following output

EDU>sm4641

\[
K =
\[
2
\]

\[
p =
\[
1 \quad 2 \quad 2
\]
ans =

-1.0000+ 1.0000i
-1.0000- 1.0000i

K =

4

p =

1 4 4

ans =

-2
-2

K =

20

p =

1 20 20

ans =

-18.9443
-1.0557

K =
Zero/pole/gain:
\[\begin{array}{ccc}
1 \\
(s+1) (s+10)
\end{array} \]

\[R = \begin{array}{ccc}
-9.7720 & -5.5000+ 4.4411i & -6.0000 \\
-1.2280 & -5.5000- 4.4411i & -5.0000
\end{array} \]

\[K = \begin{array}{c}
2 \\
40 \\
20
\end{array} \]

EDU>
EDU>

The plot of the points is shown in Figure 1.
For \(K = 2 \), the poles of the closed loop system are at \(s = -1 \pm j \). Thus, the closed loop transfer function is
\[T_c(s) = \frac{2(s + 1)}{(s + 1 - j)(s + 1 + j)}. \]

Then the step response is
\[C(s) = \frac{2(s + 1)}{s(s + 1 - j)(s + 1 + j)} = \frac{A}{s} + \frac{M}{s + 1 - j} + \frac{M^*}{s + 1 + j}. \]

The residues \(A \) and \(M \) are determined by the following MATLAB program, which also plots the step response, shown in Figure 2.

\[K = 2; \]
\[p0 = [1 0]; \]
\[p1 = [1 1+j*1]; \]
Figure 1: Plot of solutions

p2 = [1 1-j*1];
B = 2*[1 1]
A = conv(p1,p2);
A = conv(A,p0)
[R,P,K] = residue(B,A)
M = R(1)
absm = abs(M)
abs2m = 2*abs(M)
angm = angle(M)
test = 1 + 2*abs(M)*cos(angle(M))
t = 0
dt = 0.1
kount = 1
while t < 3
 c(kount) = 1+0.02728*exp(-1.1436*t) + 2*absm*exp(-2.928*t)*cos(3*t + angm);
time(kount) = t;
t = t + dt;
kount = kount + 1;
end
plot(time,c)
print -deps sr4641a.eps

For $K = 4$, there are two closed loop poles are at $s = -2$. For $K = 2$, the poles of the closed loop system are at $s = -1 \pm j$. Thus, the closed loop transfer function is

$$T_c(s) = \frac{4(s + 1)}{(s - 2)^2}.$$

Then the step response is

$$C(s) = \frac{4(s + 1)}{s(s + 2)^2} = \frac{A}{s} + \frac{B}{s + 2} + \frac{C}{(s + 2)^2}.$$

Then

$$A = \left[\frac{4(s + 1)}{(s + 2)^2} \right]_{s = 0} = 1$$
\[B = \left\{ \frac{d}{ds} \left[\frac{4(s+1)}{s} \right] \right\}_{s=-2} = \left\{ \frac{d}{ds} \left[\frac{-4(s+1)}{s^2} + \frac{4}{s} \right] \right\}_{s=-2} = \left[\frac{-4s - 4 + 4s}{(s+2)^2} \right]_{s=-2} = -1 \]

\[C = \left[\frac{4(s+1)}{s} \right]_{s=-2} = \frac{2}{2} = 1 \]

The residues, A, B, and C are determined by the MATLAB program:

```matlab
K = 4;
p0 = [1 0];
p1 = [1 2];
p2 = [1 2];
B = K*[1 1];
A = conv(p1,p2);
A = conv(A,p0);[R,P,K] = residue(B,A);A = R(3);
B = R(1);
C = R(2);
t = 0;
dt = 0.1;
kount = 1;while t < 3
        c(kount) = 1*B*exp(-2*t) + C*t*exp(-2*t);
time(kount) = t;
t = t + dt;
kount = kount + 1;
end
plot(time,c)
print -deps sr4641b.eps
```

which also plots the step response, shown in Figure 3. For \(K = 20 \), there
are two closed loop poles are at \(s = -1.0557 \) and \(s = -18.9443 \) Thus, the closed loop transfer function is

\[
T_c(s) = \frac{20(s+1)}{(s+1.0557)(s+18.9443)}.
\]

Then the step response is

\[
C(s) = \frac{20(s+1)}{s(s+1.0557)(s+18.9443)} = \frac{A}{s} + \frac{B}{s+1.0557} + \frac{C}{s+18.9443}.
\]

The residues \(A, B, \) and \(C \) are determined by the MATLAB program

\[
\begin{align*}
K &= 20; \\
p0 &= [1 0] \\
p1 &= [1 1.0557] \\
p2 &= [1 18.9443] \\
B &= K*[1 1] \\
A &= \text{conv}(p1,p2) \\
A &= \text{conv}(A,p0)
\end{align*}
\]
Figure 4: Step Response for $K = 4$

$[R,P,K] = \text{residue}(B,A)$
$A = R(3)$
$B = R(2)$
$C = R(1)$
$t = \text{linspace}(0,3,100);$
$A = \text{ones}(100,1)$
$c = A + (B*\exp(-1.0557*t))' + (C*\exp(-18.9443*t))'$
plot(t,c)
print -deps sr4641c.eps

which also plots the step response, shown in Figure 4.