Exam #2
EEL 3657 (Spring 2004)

Name: Solutions
SS#: ______________

Please show all work for partial credit. (100 points total)

Problem 1. (50 points) Consider the unity feedback system shown below (H(s)=1):

\[
\begin{align*}
R & \rightarrow \Sigma \rightarrow G_c \rightarrow G_p \rightarrow C \\
- & \downarrow H \uparrow
\end{align*}
\]

where \(G_p(s) = \frac{5}{s(s+1)} \), \(G_c(s) = \frac{K(s+4)}{s+b} \) is to be designed for a peak time \(t_p \approx 0.785\ s \) and damping ratio \(\xi = 0.8 \).

1) Find the location of the dominate closed-loop poles.
2) Find the location of the compensator pole (i.e., the value of b).
3) Find the gain K.
4) What is the steady-state error for a unit step input?
Solution 7.9.3.3

For the system of Figure 1 we have

\[G_p = \frac{5}{s(s+1)}, \quad \text{and} \quad G_c = \frac{K_c(s+4)}{s+b}. \]

To achieve \(t_p = 0.785 \text{ s} \), we solve

\[t_p = \frac{\pi}{\omega_d} \]

for

\[\omega_d = \frac{\pi}{t_p} = \frac{3.4142}{0.785} = 4 \text{ rad/s}. \]

Since \(\omega_d = \omega_n \sqrt{1 - \zeta^2} \), and \(\zeta = 0.8 \), we have

\[\omega_n = \frac{\omega_d}{\sqrt{1 - \zeta^2}} = \frac{4.0}{\sqrt{0.36}} = 6.667 \]

Then the real part of the complex roots is

\[-\zeta \omega_n = -0.8 \times 6.667 = -5.34. \]

Figure 2 shows the vector evaluation of \(G_c G_p \) at \(s = -5.34 + j4 \). To get the root locus to pass through this point we must have

\[\angle G_c G_p(s) \bigg|_{s=-5.34+j4} = -180^\circ. \]

Each of the vectors in Figure 2 is the polar representation of one of the factors in \(G_c G_p \) evaluated at \(s = -5.34 + j4 \). That is the vector \(V_1 \) is the polar representation of the factor \(s \) in the denominator of \(G_c G_p \), the vector \(V_2 \) the polar representation of the factor \(s+1 \), the vector \(V_3 \) the polar representation of the factor \(s+4 \), and the vector \(V_4 \) is the polar representation of the factor \(s+b \). Thus
Figure 2: Satisfaction of Angle Condition at \(s = -5.55 + j4.0 \)

\[G_cG_p(s) \bigg|_{s=-5.34+j4} = \frac{5K_c|V_4|L\alpha}{(|V_1|L\theta_1)(|V_2|L\theta_2)(|V_3|L\beta)} = \frac{5K_c|V_4|}{|V_1||V_2||V_3|} \cdot L(\alpha - \beta - \theta_1 - \theta_2) \]

The evaluation of \(G_cG_p \) at \(s = -5.34 + j4 \) has now been broken down into a composite magnitude and a composite angle. For the root locus to pass through \(s = -5.34 + j4 \) we must have

\[\alpha - \beta - \theta_1 - \theta_2 = -180^\circ. \]

The gain that places a closed loop pole at \(s = -5.34 + j4 \), and another at \(s = -5.34 - j4 \) is obtained by solving

\[\frac{5K_c|V_4|}{|V_1||V_2||V_3|} = 1, \quad (1) \]

or

\[K_c = \frac{|V_1||V_2||V_3|}{5|V_4|}. \quad (2) \]

It should be clear that it is the angle condition that drives this whole business. The angle condition will be used to find \(b \). Once \(b \) is determined then \(K_c \) can easily be calculated. All of the angles in equation (1) are known except \(\beta \). So we can write

\[\beta = \alpha - \theta_1 - \theta_2 + 180^\circ \]

\[= 180^\circ + [180^\circ - \tan^{-1}(4/1.33)] - [180^\circ - \tan^{-1}(4/5.34)] - [180^\circ - \tan^{-1}(4/4.33)] \]

\[= 180^\circ + 108.46^\circ - 143.13^\circ - 137.29^\circ \]

\[= 8.04^\circ \]
We now use simple trigonometry to find

\[b = 5.34 + \frac{4}{\tan(8.04^\circ)} = 5.34 + \frac{4}{0.1412} = 5.34 + 28.35 = 33.66 \]

We can now find the gain using equation (2).

\[K_c = \frac{|V_1||V_2||V_3|}{5|V_5|} = \frac{6.67 \times 5.9 \times 28.61}{5 \times 4.219} = 53.38 \]

Thus the complete compensator is

\[G_c = \frac{53.38(s + 4)}{s + 33.66} \]

(4).

\[K_p = \lim_{s \to 0} G_c G_p(s) = \lim_{s \to 0} \frac{53.38(s + 4) \times 5}{s(s + 1)(s + 33.66)} = \frac{53.38 \times 5}{0} = \infty \]

\[\varepsilon_{ss} = \frac{1}{1 + kp} = 0 \]
Problem 2. (25 points) For the transfer function \(G(s) = \frac{100(s + 10)}{s(s + 2)(s + 50)} \), sketch asymptotic (straight-line) Bode magnitude plot. Mark the slopes in your diagram.

Solution:

The first step is to put the transfer function in time constant form. So we have

\[
G(s) = \frac{100(s + 10)}{s(s + 2)(s + 50)} = \frac{1000(1 + s/10)}{(2)(50)s(1 + s/2)(1 + s/50)} = \frac{10(1 + s/10)}{s(1 + s/2)(1 + s/50)}.
\]

Then the terms to be plotted are

\[
10, \quad \frac{1}{s}, \quad \frac{1}{1 + s/2}, \quad \frac{1}{1 + s/50}, \quad \text{and} \quad 1 + s/10
\]

\(2.0\log_{10}(10) = 20\ \text{db}\)

At low frequencies the only terms that contribute are the gain and \(1/s\). The term \(1/s\), which is a straight line crossing the 0-dB line at \(\omega = 1\), will, when the gain is added in, cross at 20 dB. The other terms are straight lines at 0 dB out to the break frequencies, where they then break upwards or downwards, at 20 dB/decade, depending on whether they are zeros or poles. The pieces of the asymptotic plot, and the composite asymptotic plot are shown in Figure 1.
Problem 3. (25 points) Given the control system shown below, find the value of K so that there is a 10% steady state error for a unit ramp input.

\[
\begin{array}{c}
\text{Solution:} \\
K_u = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{K(s+5)}{s(s+6)(s+7)(s+8)} \\
= \frac{5K}{6 \times 7 \times 8} = \frac{5K}{336} \\

E_{ss} = \frac{1}{K_u} = \frac{336}{5K} = 10\% \\
\Rightarrow K = 672.
\end{array}
\]