Lecture 1
Electric Circuit Variables

Instructor: Yi Guo
Aims and Plan

- Introduction to the subject.
- Electric circuit variables.
- Electric circuit element: resistor.
The Subject...

- *Electrical engineering* is the profession concerned with systems that produce, transmit, and measure electric signals.
- It combines the physicist’s models of natural phenomena with the mathematician's tools for manipulating those models to produce systems that meet practical needs.
Five Major Classifications of Electrical Systems

- Communication systems;
- Computer systems;
- Control systems;
- Power systems;
- Signal-processing systems.
Circuit Theory

- An electric circuit is a *mathematical model* that approximates the behavior of an actual electrical system.
- The models, the mathematical techniques, and the language of circuit theory will form the intellectual framework for your future engineering endeavors.
Problem Solving Process

Figure 1.4 A conceptual model for electrical engineering design

From: Nilsson/Riedel, Electric Circuits, 6e, July 2000 Prentice Hall, Inc.
What is Electric Circuit?

- An electric circuit is an interconnection of *electrical elements* linked together in a *closed* path so that an *electric current* may flow continuously.

A simple circuit:
Basic Circuit Variables

- **Charge**: the quantity of electricity responsible for electric phenomena, denoted by q, Unit: Coulomb, C.
- **Current**: the time rate of flow of electric charge past a given point, denoted by i.
 - Mathematical representation: $i = \frac{dq}{dt}$
 - Unit: ampere, A.
Current

Two different types:

- **DC (direct current)** is a current of *constant magnitude*.

 ![Diagram of constant current](image)

- **AC (alternating current)** is a time-varying current \(i(t) \) that has a sinusoidal form.
Time-Varying Current

(a) A ramp with a slope M.
(b) A sinusoid.
(c) An exponential. I is a constant. The current i is zero for $t < 0$.
Voltage

- **Definition:** energy required to move a unit positive charge from the – terminal to the + terminal across an element.

- **Mathematical representation:**
 \[v = \frac{dw}{dq} \]

- **Unit:** volt, V.
Voltage

The direction of a voltage is given by its polarities:

- The voltage v_{ab} is proportional to the work required to move a positive charge from terminal a to terminal b.
- The voltage v_{ba} is proportional to the work required to move a positive charge from terminal b to terminal a.

v_{ab} is read as “the voltage at terminal a with respect to terminal b”; or, “the voltage drop from terminal a to terminal b”.

\[v_{ab} = -v_{ba} \]
Power

Definition: time rate of expending or absorbing energy.

Mathematical representation: $p = \frac{dw}{dt}$

Unit: watt, W.

Relation with current and voltage: $p = vi$
Passive convention: the assigned direction of the current is directed from the + terminal to the – terminal.

a). Power absorbed (or dissipated) by the element, as \(v \) and \(i \) adhere to the passive convention.

b). Power supplied (or delivered) by the element, as \(v \) and \(i \) do not adhere to the passive convention.
Work-Out

- Relationship between energy, power, voltage and current...
Example 1:

Find the charge that has entered the terminal of an element from $t=0s$ to $t=3s$ when the current is as shown below.
Example 2:

Find the charge, $q(t)$, and sketch its waveform when the current entering a terminal of an element is as shown below. Assume $q(0)=0$.
Example 3:

Consider the circuit shown in the figure with \(v=8e^{-t} \) V and \(i=20e^{-t} \) A for \(t\geq 0 \). Find the power supplied by this element and the energy supplied by the element over the first second of operation. Assume that \(v \) and \(i \) are zero for \(t<0 \).
Example 4:

The average current in a typical lightning thunderbolt is 2×10^4 A and its typical duration 0.1s. The voltage between the clouds and the ground is 5×10^8 V. Determine the total charge transmitted to the earth and the energy released.
A linear element satisfies the property of superposition and homogeneity.

IF \[i_1 \rightarrow v_1 \]
\[i_2 \rightarrow v_2 \]

THEN \[i_1 + i_2 \rightarrow v_1 + v_2 \]
\[ki_1 \rightarrow kv_1 \]
\[ki_2 \rightarrow kv_2 \]
A passive element absorbs energy.

\[w = \int_{-\infty}^{t} vid \tau \geq 0 \quad \text{for all } t. \]

An active element is capable of supplying energy.

\[w = \int_{-\infty}^{t} vid \tau > 0 \quad \text{for at least one } t. \]
(a) The entry node of the current i is the positive node of the voltage v,

(b) the entry node of the current i is the negative node of the voltage v. The current flows from the entry node to the exit node.
Resistors

Resistors impedes the flow of current. Unit: Ohm.

Ohm’s law: \(v = Ri \)

\(v = Ri_a \)

\(v = -Ri_b \)
Power delivered to a resistor:

\[p = vi = v(v/R) = v^2/R \]

\[p = vi = (iR)i = i^2R \]
Example 5:

Model of a car battery and the headlight lamp:

Work out the energy supplied by the battery for a four-hour period.
Summary

Circuit variables:
- Charge
- Current
- Voltage
- Power
- Energy
Concepts:
- Linearity
- Passive elements
- Active elements
- Passive convention

Circuit element:
- Resistor
 - Ohm’s law