Binning Metagenomic Reads

Microbes are important

http://ocean.nationalgeographic.com/ocean/

https://en.wikipedia.org/wiki/Desert

https://www.bcm.edu/departments/molecular-virology-andmicrobiology/research/the-human-microbiome-project

Difficulty in study of microbes

more than 99% of organism genomes in the environment are uncultured

http://schaechter.asmblog.org/schaechter/2010/07/the-uncultured-bacteria.html

What is Metagenomics?

Metagenomics is the study of genetic material recovered directly from environmental samples.

THE METAGENOMICS PROCESS

Metagenomic analysis--Binning

Metagenomic analysis--Binning

- Sequencing errors
- A huge number of unknown genomes

classical approaches

Taxonomy-dependent methods:

Alignment-based binning (MEGAN)

http://ab.inf.uni-tuebingen.de/software/welcome.html/megan5

Composition-based binning (Kraken)

Kraken Taxonomic Sequence Classification System

https://ccb.jhu.edu/software/kraken/

Problems in taxonomy-dependent methods

MBMC works better for datasets that contain unknown species

Taxonomy-independent methods

AbundanceBin, MetaCluster

the difference of k-mer (short sequence with length k) frequencies of different microbes in the environmental samples

Observations:

- k-mer frequency genome's coverage
- Iong k-mers are usually unique in each genome
- k-mer frequency distribution from the same genome are similar

Problems in taxonomy-independent methods

>AbundanceBin/MetaCluster: only utilize the k-mers frequency.

→MBBC: improve the method to utilize the k-mer frequency; utilized Markov properties shared by a group of reads

MBBC-(Metagenomic Binning Based on Clustering)

	MBBC
* Input Reads file (fasta format)	Outputs:
Open file loaded: ba3mo8.fna	Begin to filter reads in case of 'N' or very short reads(<16bp):
* Input m (number of species) m: 10	Begin to predict alpha (relative abundance) and lambda (k-mer coverage): Initial predicted alpha, lambda: Predicted alpha: 75.12% 24.57% 0.21% 0.09% 0.02% 0.01% 0.00 Predicted lambda: 4.21 7.79 20.79 27.31 45.46 45.46 57.8
* Options:	Begin to update frequency of k-mers that occur 0 to 3 times:(usually need a longer time)Predicted alpha,lambda after updating frequency of k-mers that occur 0 to 3Predicted alpha: 48.52% 50.50% 0.78% 0.18% 0.02% 0.01% 0.00Predicted lambda: 2.58 6.38 12.72 24.73 44.47 44.47 56.7

Copyright@2014 Data Integration and Knowledge Discovery lab @ UCF

MBBC

Taxonomy-independent method, bin reads based on

- k-mer frequency
- Markov properties

Wang Y, Hu H, Li X. MBBC: an efficient approach for metagenomic binning based on clustering. BMC Bioinformatics. 2015 Feb 5; 16(1):36.

Wang et al. BMC Bioinformatics 2015 16:36 doi:10.1186/s12859-015-0473-8

Mixture Poisson distribution

- Frequency of k-mers in all reads: x_i follows a mixture of m Poisson distribution
- if x_i is from j-th Poisson distribution, then $P(x_i = x) = \alpha_j p_j(\lambda_{i,x}) = \alpha_j \frac{\lambda_j^x}{x!} e^{-\lambda_j}$, j:1,2,...,m

 α_j : relative abundance λ_i : k-mer coverage

• Initialize $\alpha_i = 1/m$, $\lambda_i = j*10+10$, m=10

• Iterate E-step and M-step until converge (the difference between updated α_j , λ_j <1e-05)

Estimate the number of k-mers occur 0 to 3 times

$$\sum_{j=1}^{m} \frac{p_j(\lambda_j, x) \sum_{i=1 \& x_i \ge 4}^{n} Z_{ij}}{1 - \sum_{s=0}^{3} p_j(\lambda_j, s)}$$

 x_i for i<4 are inaccurate because of the existence of low abundance species and sequencing errors.

Estimate species number

Genome size
$$g_j = \frac{\sum_{i=1}^{n'} Z_{ij} * x_i}{\lambda_j}$$

Delete small groups if $g_j \le 400,000$, the size of the sequenced smallest genome of living organisms

Assign reads confidently

x: the median frequency of k-mers in each read

Calculate: $p_j(\lambda_j, x)$, j=1,2,..,m

For a read, only if its largest probability minus the second largest probability is larger than a cutoff C (C=0.5), this read will be assigned

-> unassign reads ...

Assign reads to trained Markov chains

Assignment score

 $S(a_1a_2 \dots a_k) * T(a_{k+1}|a_1a_2 \dots a_k) * T(a_{k+2}|a_2a_3 \dots a_{k+1}) * \dots * T(a_n|a_{n-k}a_{n-k-1} \dots a_{n-1})$

 a_i ->nucleotide at the i-th position of this read, n ->the length of read S -> transition probability, T -> stationary probability

The procedure of read clustering in MBBC. The output on the right from each of the main steps on the left is connected with the corresponding steps. Wang *et al. BMC Bioinformatics* 2015 16:36 doi:10.1186/s12859-015-0473-8

A. Initial prediction of α , λ											
Initial	1	2	3	4	5	6	7	8	9	10	
Species											
α	43.30%	22.97%	11.07%	20.84%	1.16%	0.51%	0.12%	0.03%	6 0.00%	0.00%	
λ	3.88	11.14	16.57	23.61	38.71	51.62	74.22	105.3	37 158.79	329.53	
									·		
	B. Prediction after updating #k-mers that occur 0 to 3 times										
α	31.59%	16.01%	25.79%	24.33%	1.38%	0.72%	0.14%	0.03%	6 0.01%	0.00%	
λ	3.34	6.67	13.05	22.98	35.61	49.23	72.22	103.4	5 156.95	328.64	
		C. P	rediction af	ter removi	ng small g	groups of	k-mers				
Genome	3009885	660737	1005524	948301	53786	27871	5352	1249	197	36	
size											
α	31.59%	16.01%	25.79%	24.33%	1.38%	0.72%	0.14%	0.03%	6 0.01%	0.00%	
λ	3.34	6.67	13.05	22.98	35.61	49.23	72.22	103.4	5 156.95	328.64	
					·						
[D. Predicti	on after itera	atively binn	ning read b	ased on N	/larkov ch	ains: Pre	dicted	(real data)		
Predicted Sp	oecies	1		2		3		-	4		
Genome size	e	1498994 (11	60554)	825923 (945296)		1138156 (1107344)			1212248 (1075140)		
α 9.42% (6.98%) 10.35% (11.36%) 27.91% (29.95%) 52.33% (51.70%)						AND STREET, STORES					

6.67 (5.83)

13.05 (12.48)

22.98 (20.52)

MBBC: an efficient approach for metagenomic binning based on clustering BMC Bioinformatics. 2015;16(1):36.

3.34 (3.49)

λ

	A. Initial prediction of α , λ											
Initial	1	2	3	4	5	6	7	8	9	10		
Species												
α	43.30%	22.97%	11.07%	20.84%	1.16%	0.51%	0.12%	0.03%	0.00%	0.00%		
λ	3.88	11.14	16.57	23.61	38.71	51.62	74.22	105.3	7 158.79	329.53		
B. Prediction after updating #k-mers that occur 0 to 3 times												
α	31.59%	16.01%	25.79%	24.33%	1.38%	0.72%	0.14%	0.03%	0.01%	0.00%		
λ	3.34	6.67	13.05	22.98	35.61	49.23	72.22	103.45	5 156.95	328.64		
		C. P	rediction af	ter removi	ng small g	groups of	k-mers					
Genome	3009885	660737	1005524	948301	53786	27871	5352	1249	197	36		
size												
α	31.59%	16.01%	25.79%	24.33%	1.38%	0.72%	0.14%	0.03%	0.01%	0.00%		
λ	3.34	6.67	13.05	22.98	35.61	49.23	72.22	103.45	5 156.95	328.64		
					·							
C	D. Prediction	on after itera	atively binn	ing read b	ased on N	/larkov ch	ains: Pre	dicted (real data)			
Predicted Species 1			2		3		4	4				
		· · · · · · · · · · · · · · · · · · ·			825923 (945296)		1138156 (1107344)			1212248 (1075140)		
Genome size		1498994 (11	60554)	825923 (9	45296)	1138156	6 (1107344	1) 1	212248 (107	'5140)		

6.67 (5.83)

13.05 (12.48)

22.98 (20.52)

MBBC: an efficient approach for metagenomic binning based on clustering BMC Bioinformatics. 2015;16(1):36.

3.34 (3.49)

λ

	A. Initial prediction of α , λ										
Initial Species	1	2	3	4	5	6	7	8		9	10
α	43.30%	22.97%	11.07%	20.84%	1.16%	0.51%	0.12%	0.03	%	0.00%	0.00%
λ	3.88	11.14	16.57	23.61	38.71	51.62	74.22	105.3	37	158.79	329.53
		B. Predi	ction after ι	updating #I	k-mers th	at occur () to 3 tim	es			
α	31.59%	16.01%	25.79%	24.33%	1.38%	0.72%	0.14%	0.039	%	0.01%	0.00%
λ	3.34	6.67	13.05	22.98	35.61	49.23	72.22	103.4	45	156.95	328.64
	<u>.</u>	С. Р	rediction af	ter removi	ng small g	groups of	k-mers				
Genome	3009885	660737	1005524	948301	53786	27871	5352	1249	£ :	197	36
size											
α	31.59%	16.01%	25.79%	24.33%	1.38%	0.72%	0.14%	0.03 9	¥#	0.01%	0.00%
λ	3.34	6.67	13.05	22.98	35.61	49.23	72.22	103./	45	156.95	328.64
					·						
[D. Predicti	on after itera	atively binn	ing read b	ased on N	/larkov ch	ains: Pre	dicted	l (real	l data)	
Predicted Sp	pecies	1		2		3			4		
Genome siz	e	1498994 (11	60554)	825923 (945296)		1138156 (1107344)			1212248 (1075140)		
α		9.42% (6.98%	%)	10.35% (1	1.36%)	27.91% (29.95%)			52.33	3% (51.70	0%)
λ		3.34 (3.49)		6.67 (5.83)	13.05 (1	2.48)		22.98	8 (20.52)	

MBBC: an efficient approach for metagenomic binning based on clustering BMC Bioinformatics. 2015;16(1):36.

Results 2 MBBC reliably assigns reads

Problems in MBBC, MetaCluster, AbundanceBin

Difficulty to bin reads with low abundances or similar abundances

 \rightarrow a common problem in taxonomy independent method

MBMC-Metagenomic Binning based on Markov Chains

Outputs:

	outputsi		
*Input reads files (fasta format)	**************************************		
OPEN file loaded: 3_1_low.fna	Get potential taxa from high to low levels:		
*Cutoff (determine # species)	phylum level done -> #potential phylum: 14 class level done -> #potential class: 21 order level done -> #potential order: 22 family level done -> #potential family: 9		
0.05 (default)	genus level done -> #potential genus: 12 species level done -> #potential species: 3		
*Reads Type ☐ Single-end reads	Assign reads to 3 potential species The final predicted number of species: 3 Reads file '3_1_low.fna' has been binned. Total running time: 1.58 mins		
Run			
Copyright@2015 Data Integrati	ion and Knowledge Discovery lab @ UCF		

Reference database

each taxon was represented by a 9-th order Markov chain

Markov chain for input reads

 All input reads were represented by a 9-th order Markov chain

Estimate relative abundance

$$y = \mathbf{X}\beta + \epsilon$$

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}, X = \begin{pmatrix} X_1^T \\ X_2^T \\ \dots \\ X_n^T \end{pmatrix} = \begin{pmatrix} x_{11} \dots x_{1p} \\ x_{21} \dots x_{2p} \\ \dots \\ x_{n1} \dots x_{np} \end{pmatrix}, \ \boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \dots \\ \boldsymbol{\beta}_p \end{pmatrix}, \ \boldsymbol{\epsilon} = \begin{pmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \dots \\ \boldsymbol{\epsilon}_p \end{pmatrix}$$

 β_j approximates the relative abundance of reads from a taxon

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Results 1 9-th Markov chain models are effective in representing microbial genomes

OMICS. 2016 Aug;20(8):470-9. doi: 10.1089/omi.2016.0081. Epub 2016 Jul 22.

Results 2 MBMC reliably predicted the species number and accurately grouped reads in simulated datasets

dataset[species #]	MBMC [m]	MetaCluster	Abundancebin	MEGAN5 [m]	Kraken [m]
1_1[5]	96.96%[5]	42.56%	na	94.19%[4]	92.00%[4]
1_2[6]	96.25%[6]	91.36%	na	97.02%[6]	90.57%[5]
2_1[5]	99.04%[5]	42.76%	34.48%	88.37%[5]	92.60%[5]
2_2[6]	95.26%[6]	89.38%	33.50%	97.71%[6]	89.16%[6]
3_1[5]	89.11%[5]	36.19%	29.55%	99.01%[5]	94.59%[5]
3_2[6]	94.37%[7]	87.20%	38.50%	93.25%[7]	93.32%[6]
4_1[5]	97.36%[5]	41.57%	28.07%	97.39%[5]	96.27%[5]
4_2[6]	86.01%[5]	90.42%	28.06%	98.82%[6]	96.43%[6]
5_1[5]	93.36%[5]	40.78%	28.28%	82.02%[6]	91.68%[5]
5_2[6]	69.39%[6]	51.02%	na	89.55%[6]	90.50%[7]

Results 3 MBMC worked well on datasets with unknown species

dataset[species	MBMC [m]	MetaCluster	Abundancebi	MEGAN5 [m]	Kraken [m]
#]			n		
0_1	65.39%[12]	63.60%	39.71%	0.00%[0]	0.00%[0]
0_1*	65.47%[13]	na	38.76%	0.00%[0]	0.00%[0]
0_2	68.55%[11]	60.16%	39.66%	0.00%[0]	0.00%[0]
0_2*	68.05%[12]	na	38.68%	0.00%[0]	0.00%[0]
0_3	79.15%[13]	61.56%	36.59%	0.00%[0]	0.00%[0]
0_3*	77.23%[12]	na	36.25%	0.00%[0]	0.00%[0]
0_4	63.87%[15]	58.38%	35.00%	0.00%[0]	0.00%[0]
0_4*	64.09%[15]	na	35.04%	0.00%[0]	0.00%[0]
0_5	75.02%[15]	57.15%	37.34%	0.00%[0]	0.00%[0]
0_5*	76.22%[14]	na	37.51%	0.00%[0]	0.00%[0]

Results 4 MBMC performed much better than other methods on experimental datasets

dataset(known species#[species#])		MetaCluste r	Abundancebi n	MEGAN5 [m]	Kraken [m]
SRS017080(1[4])	80.62%[8]	35.65%	41.02%	72.55%[5]	56.50%[5]
SRS013705(1[5])	42.63%[8]	14.70%	32.47%	13.85%[1]	10.70%[1]
HMP mock(6[6])	76.63%[5]	na	na	81.79%[6]	62.52%[6]
human gut(1[3])	83.16%[7]	71.77%	69.68%	14.72%[1]	11.38%[1]

Problems in MBMC

 MBMC tended to divide reads from an unknown species into multiple small bins.

→How do we know there are unknown species in the dataset?

 \rightarrow How to bin reads better for these unknown species?

Metagenomic binning based on clustering of Markov chains

Improve the method of MBMC:

Iong k-mers

Reads Assembly

Question

How to use the sequenced genomes across taxa to train a model to bin reads? Alternative approaches that extend the idea of MBMC.