

Introduction to Galaxy

What is Galaxy?

- Galaxy is a free web-based scientific analysis platform that can be used by scientists across the world
- Galaxy's tools assist in the analysis of large biological datasets that are common in fields such as genomics or bioinformatics

Motivation of Galaxy

Sequencers throughput require parallel processing of multiple samples \Rightarrow how do you efficiently monitor all these workflow executions ?

What makes Galaxy special?

How to Start

- Go to <u>usegalaxy.org</u> and click the "Login or Register" tab at the top
- Click on the "Register here" link below the login to begin creating an account
 - Once done filling in the required information, click "Create"
 - You will be required to verify your account's email address before being able to use any of the tools or data available
- After creating and verifying your account, you are ready to begin your introduction into Galaxy

F Galaxy PROJECT

Welcome to Galaxy

Noticeable Tool Categories

Running a Tool is easy

Click a tool to bring it up in the middle panel eg FastQC

Running a Tool is easy

Tool summary

More than 350 tools available !

✓ All results can be downloaded or directly transferred to your project folder

 \checkmark Missing Tools can be easily integrated

✓ Easy way to add a GUI to your own script

 \checkmark Parameters for cluster submission can be adjusted for each tool (and even be dynamically computed)

Tools can be assembled into workflows

Example of Galaxy Usage

- "RNA–Seq Data Analysis in Galaxy" is an academic article published on PubMed and SpringerLink
- The purpose of this article is to showcase the tools and steps involved in RNA-Seq analysis meant to find differentially expressed genes with enrichment analysis

Data Used

- This article used real data for analysis based on a study conducted by Brooks AN, Yang L, Duff MO et al (2011) Conservation of an RNA regulatory map between Drosophila and mammals.
 - This referenced article found genes and pathway that regulated the pasilla gene of *Drosophila melanogaster* and discovered RNAi could deplete the gene
 - They then created RNA-seq libraries for treated and untreated samples of the pasilla gene to gather RNA-seq reads and compare them to monitor the effects of pasilla depletion on gene expression
- Seven of the original datasets were sampled and used for analysis
 - Four untreated samples: GSM461176, GSM461177, GSM461178, GSM461182
 - Three treated samples: GSM461179, GSM461180, and GSM461181

Methods Used: Quality Control

- FASTQ files are taken for the samples and the reads undergo quality control using
 - FastQC: a tool used to perform quality control checks on raw sequence data that is coming from high throughput sequencing pipelines
 - Creates a QC report that flags any issues with the data that the user should be aware of before continuing analysis
 - Cutadapt: a tool used to find and remove any adapter sequences, primers, poly-A tails and other types of unwanted sequences from high-throughput sequencing reads
- Each step up until "Counting" is followed by the use of the MultiQC tool for quality checks
 - MultiQC searches a directory and logs/compiles a report viewable via HTML
 - Useful for summarizing outputs of numerous bioinformatics tools

Methods Used: Quality Control (FASTQC)*

*This is GSM461180 for an example

Methods Used: Mapping

- After quality control, the data is mapped to a reference genome of *D. melanogaster* using STAR in order to make sense of the reads collected
 - Used to find where the sequences originated from within the genome and which genes they belong to
 - STAR is used for ultra fast alignment of RNA-seq data
 - Often useful for mapping RNA data from RNA-seq or CLIP experiments
 - The MultiQC revealed that 80% of the reads were able to map exactly once to the referenced genome, anything below 70% could indicate contamination of the sample
- After mapping with STAR, the mapping is checked using Integrative Genomics Viewer (IGV) and some other tools
 - IGV is a visualization tool capable of displaying next-generation sequencing data
 - Here we will see an example of IGV creating a Sashimi plot to analyze splice junctions and reads

Methods Used: Mapping (STAR)

Methods Used: Mapping (IGV)

Methods Used: Counting

- Once the mapping was checked, the number of reads per annotated gene is counted using the featureCounts tool
 - featureCounts is a tool that is used for quantifying reads generated from RNA or DNA-seq technologies
 - Uses chromosome hashing, feature blocking, and more to read features with high efficiency
 - This is used to compare expressions of genes between different conditions in order to quantify the number of reads per gene/the number of reads mapping to the exons of each gene
 - Outputs include
 - A table with the numbers of reads mapped to each gene
 - A file with the length of each gene

Methods Used: Identification of differentially expressed features; Extraction and Annotation

- DESeq2 extracted the differentially expressed genes and can annotate them.
- The main output of DESeq2 is a summary file that contains certain values relating to each gene
 - Gene identifier
 - Mean normalized counts
 - Fold change in log2
 - Compares fold changes between treated and untreated samples and the values correlate to up- or down-regulation of the gene
 - Standard error estimate for fold change
 - Wald statistic
 - P-values for significance of seen changes
 - All of these outputs can be used to create graphical summaries

Methods Used: Identification of differentially expressed features (DESeq2)

- After checking the counting, DESeq2 was used on these counts to normalize them and extract any differentially expressed genes
 - DESeq2 is a tool designed to normalize, visualize, and implement differential analysis of high-dimensional count data

٠

Methods Used: Visualization (Heatmap2 and Volcano Plot)

- The data was then visualized using Heatmap2 and Volcano Plots to assign colors based on gene expression
 - Red colors indicate significant overexpression
 - Blue colors indicate significant underexpression

Methods Used: Functional Enrichment Analysis

- Enrichment analysis can now be conducted in order to tell if the differentially expressed genes mentioned before are tied to any genes which play a role in biological function and see how they could be impacted
 - Gene ontology (GO) analysis is popularly used for this analysis as it helps to highlight biological processes within genome expression studies

Methods Used: Functional Enrichment Analysis Cont.

- The tool being used here will be goseq
 - goseq allows GO analysis to be performed on RNA-seq data while taking gene length biases into account
 - The output will be a table with the following columns
 - GO category
 - p-Value for overrepresentation of the term in differentially expressed genes
 - p-Value for underrepresentation of the term in differentially expressed genes
 - Number of differentially expressed genes
 - Number of genes
 - Details about term
 - Ontology with Molecular Function, Cellular Component, and Biological Process
 - p-Value for overrepresentation of the term in differentially expressed genes adjusted for multiple testing with the Benjamini-Hochberg procedure
 - p-Value for underrepresentation of the term in differentially expressed genes adjusted for multiple testing with the Benjamini-Hochberg procedure

Where Can You Follow This Analysis?

- The article provides detailed steps for doing this analysis yourself within Galaxy by including:
 - Where to access the data
 - How to download the data
 - How to upload the data
 - What tools to use and under what parameters
 - The meaning behind every step and discussion of said findings

References

Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coroar, N., Grüning, B., Guerler, A., Hillman-Jackson, J., Hiltemann, S., Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., Blankenberg, D. (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. *Nucleic Acids Research*, *46*(W1). <u>https://doi.org/10.1093%2Fnar%2Fgky379</u>

Batut, B., van den Beek, M., Doyle, M. A., & Soranzo, N. (2021). RNA-seq data analysis in galaxy. *Methods in Molecular Biology*, 2284, 367–392. <u>https://doi.org/10.1007/978-1-0716-1307-8_20</u>

References cont.

- <u>https://galaxyproject.github.io/</u>
- <u>https://galaxyproject.org/usegalaxy/</u>
- <u>usegalaxy.org</u>