Protein Secondary Structure
Classification

Some slides are modified from Kun
Huang (OSU) and Doug Brutlag
(Stanford)



Primary, secondary, tertiary and
quaternary structures

Primary Secondary Tertiary - Quaternary
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Structure prediction

Summary of the four main approaches to structure prediction.
Note that there are overlaps between nearly all categories.

Method Knowledge |Approach Difficulty Usefulness
Secondary Sequence- |Forget 3D arrangement and Medium Can improve alignments,
structure structure predict where the helices/strands fold recognition, ab initio
prediction statistics are
Comparative |Proteins of |ldentify related structure with Relatively easy  |Very, if sequence identity
modelling known sequence methods, copy 3D drug design
(Homology |structure coords and modify where
modelling) necessary
Fold Proteins of |Same as above, but use more Medium Limited due to poor models
recognition  |known sophisticated methods to find

structure related structure
ab initio Energy Simulate folding, or generate lots |Very hard Not really
tertiary functions, of structures and try to pick the
structure statistics correct one
prediction




Physics of secondary structures

 Two main opposing forces
— Side chain conformational entropy
— Main chain hydrogen bonding.

* This predicts:
— Helix propensity Ala>Leu>lle>Val

e Other factors

— Polarity (low helical propensity of Ser, Thr, Asp
and Asn)



Initial approaches to
secondary structure prediction
* |[nputis a "sliding window" of immediately
surrounding sequence assumed to determine

structure (no long distance interactions)
..mnnstnssnsgla...
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* Output is one of three possible secondary
structure states: helix, strand, other



Secondary structures -Helix

Toilet roll representation of the main chain hydrogen
bonding in an alpha-helix.

Amino Carhoxy
terminus terminus



Secondary Structure - Sheet

Antiparallel beta-sheet
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Parallel beta-sheeat

The different types of W‘Y"Y
beta-sheet. Dashed lines

indicate main chain
hydrogen bonds.
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Secondary structure - turns

Reverse turns. Two-residue beta-hairpin turns.

Type | Type I’ Type II'

VWhite dots indicate hydrogen bonds.
The white dots indicate hydrogen The main differenc nese two tL "5 hH
bonds. orientation of the p o b




Why might this work?

 There are local propensities to secondary structural
classes (largely hydropathy)

— Helices: no prolines, sometimes amphipathic (show
alternating hydropathy with period 3.6 residues)

— Strands: either alternating hydropathy or ends hydrophillic
and center hydrophobic

— Neither: small, polar & flexible residues. Prolines.

 Minimum lengths for secondary structures (helices
longer than strands)



Early methods for Secondary Structure
Prediction

* Chou and Fasman

(Chou and Fasman. Prediction of protein conformation.
Biochemistry, 13: 211-245, 1974)

* GOR

(Garnier, Osguthorpe and Robson. Analysis of the accuracy  and

implications of simple methods for predicting the secondary structure of
globular proteins. J. Mol. Biol., 120:97- 120, 1978)



Chou and Fasman

e Start by computing amino acids propensities to
belong to a given type of secondary structure:

P(i/ Helix) P(i/ Beta) P(i/Turn)
P(i) P(i) P(i)

Propensities > 1 mean that the residue type | is likely to be found in the
Corresponding secondary structure type.



Chou and Fasman

Amino Acid a-Helix B-Sheet Turn

Favors
o-Helix

Favors
B-strand

Favors
turn




Chou and Fasman

Predicting helices:
- find nucleation site: 4 out of 6 contiguous residues with P(a)>1
- extension: extend helix in both directions until a set of 4 contiguous
residues has an average P(a) < 1 (breaker)
- if average P(a) over whole region is >1, it is predicted to be helical

Predicting strands:
- find nucleation site: 3 out of 5 contiguous residues with P()>1
- extension: extend strand in both directions until a set of 4 contiguous
residues has an average P(3) < 1 (breaker)
- if average P(3) over whole region is >1, it is predicted to be a strand



Chou and Fasman

f(i) fli+1) f(i+2) f(i+3)

Position-specific parameters Ala 0.060 0.076 0.035 0.058
for turn: Arg 0.070 0.106 0.099 0.085
Each position has distinct Asp 0.147 0.110,0.179]0.081
amino acid preferences. Asn 0.161 0.083|0.191)0.091
Cys 0.149 0.050 0.11'7| 0.128|
les: Glu 0.056 0.060 0.077 O.

Examples: Gln 0.074 0.098 0.037
Gly 0.102 0.085|0.190(0.152
-At position 2, Pro is highly His 0.140 0.047 [:93‘ 0.054
preferred; Trp is disfavored Ile 0.043 0.034 0.013 0.056
Leu 0.061 0.025 0.036 0.070
-At position 3, Asp, Asn and Gly Lys 0.055 0.115 0.072 0.095
are preferred Met 0.068 0.082 0.014 0.055
Phe 0.0590.065 0.065
_At position 4, Trp, Gly and Cys Pro 0.102|0.301/0.034 0.068
referred Ser 0.120 0.139 0.125 0.106
P Thr 0.086 0.108 0.065 0.079
Trp 0.077 [0.013]0.064(0.167
Tyr 0.082 0.065 0.114 0.125
vVal 0.062 0.048 0.028 0.053



Chou and Fasman

Predicting turns:
- for each tetrapeptide starting at residue i, compute:
- P, (@verage propensity over all 4 residues)
- F = f(i)*f(i+1)*f(i+2)*f(i+3)
- if P;,,, > Pacand Py, > P and P, > 1 and F>0.000075
tetrapeptide is considered a turn.

Chou and Fasman prediction:

http://fasta.bioch.virginia.edu/fasta_www/chofas.htm



The GOR method

Position-dependent propensities for helix, sheet or turn is calculated for each

amino acid. For each position j in the sequence, eight residues on either side are
considered.

<

A helix propensity table contains information about propensity for residues at 17

positions when the conformation of residue j is helical. The helix propensity tables
have 20 x 17 entries.

Build similar tables for strands and turns.

GOR can be used at : http://abs.cit.nih.gov/gor/ (current version is GOR V)




The GOR method

* Chou-Fasman method looked at frequency of each
amino acid in window

* GOR defined an information measure
I(S;R) = log[P(S|R)/P(S)]
where S is secondary structure and R is amino acid.
Define information gain as:
I(S;R) - 1(~S;R)
and predict state with highest gain.

— How to combine info gain for each element of sliding
window? Independently (just add) or by pairs



Accuracy

e Both Chou and Fasman and GOR have been assessed
and their accuracy is estimated to be Q3=60-65%.



Status of predictions in 1990

* Too short secondary structure segments
* About 65% accuracy
* Worse for Beta-strands

* Example:
SEQ KELVLALYDYQEKSPREVIMKKGDILILLNSTHEDWWEKVEVHNDROGFVPAAYTVEKLD
oBs EEEE E E E EEEEEE EEEEEE EEEEEEHHHEEEE

TYP EHHHH EE EEEE EE HHHEE EEEHH

Sepkzian Aot 0T oubm S S T,



Secondary structure prediction
2nd generation methods

* sequence-to-structure relationship
modelled using more complex statistics,
e.g. artificial neural networks (NNs) or
hidden Markov models (HMMs)

e evolutionary information included (profiles)
* prediction accuracy >70% (PhD, Rost 1993)



Neural networks

The most successful methods for predicting secondary structure
are based on neural networks. The overall idea is that neural
networks can be trained to recognize amino acid patterns in
known secondary structure units, and to use these patterns to
distinguish between the different types of secondary structure.

Neural networks classify “input vectors” or “examples” into
categories (2 or more).
They are loosely based on biological neurons.



The perceptron

\K\ | §>T
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Input Threshold Unit Output

XN

The perceptron classifies the input vector X into two categories.

If the weights and threshold T are not known in advance, the perceptron
must be trained. Ideally, the perceptron must be trained to return the correct
answer on all training examples, and perform well on examples it has never seen.

The training set must contain both type of data (i.e. with “1” and “0” output).



The perceptron

Notes:

- The input is a vector X and the weights can be stored in another
vector W.

- the perceptron computes the dot product S = X.W
- the output F is a function of S: it is often set discrete (i.e. 1 or

0), in which case the function is the step function.
For continuous output, often use a sigmoid:

- Not all perceptrons can be trained ! (famous example: XOR)



The perceptron

Training a perceptron:

Find the weights W that minimizes the error function:

(" » ) P: number of training data
B ; i 2 X': training vectors
L= Z (F(X W) o t(X )) F(W.X): output of the perceptron
S i=1 y t(X) : target value for X
Use steepest descent:
VE = OF OF OF OE
- compute gradient: ow, ’ ow, ’ ow, Y ow,,

- update weight vector: [W — old gVE ]

new

- iterate
(e: learning rate)



Neural Network

D
Za¥a\
"\\ is a set of perceptrons
_ _ interconnected such that
. . . . Hidden units the outputs of some units
b

// A complete neural network
(t

7
S

\. \\/‘///"/ becomes the inputs of other
:\‘E‘\Y"" ”; units. Many topologies are
‘0.0\':,4\0. .
//’\1'/;\‘?/"-\\ y topolog

. . . . Input units possible!

Neural networks are trained just like perceptron, by minimizing an error function:

Ndata

E = Z (NN (X)) = (X))



Neural networks and Secondary Structure
prediction

Experience from Chou and Fasman and GOR has shown
that:

— In predicting the conformation of a residue, it is
important to consider a window around it.

— Helices and strands occur in stretches
— It is important to consider multiple sequences



PHD: Secondary structure prediction using NN

EBiophysics: Rost and Sander

Proc. Natl. Aé¢ad. Sci. USA 90 (1993) 7559 ]
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PHD

Sequence-Structure network: for each amino acid aj, a window of 13 residues aj-
6...aj...aj+6 is considered. The corresponding rows of the sequence profile are fed
into the neural network, and the output is 3 probabilities for aj: P(aj,alpha), P(aj,
beta) and P(aj,other)

Structure-Structure network: For each aj, PHD considers now a window of 17
residues; the probabilities P(ak,alpha), P(ak,beta) and P(ak,other) for k in [j-8,j+8]
are fed into the second layer neural network, which again produces probabilities
that residue aj is in each of the 3 possible conformation

Jury system: PHD has trained several neural networks with different training sets;
all neural networks are applied to the test sequence, and results are averaged

Prediction: For each position, the secondary structure with the highest average
score is output as the prediction



PHD: Input

For each residue, consider
a window of size 13:

13x20=260 values
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T TMO-HO WZ<OUUTWODOUmMYD == =<O"

PHD: Network 1
Sequence ==Structure

13x20 values

- Network1 —

3 values

T TMO-HO WZ<OUUTWODOUmMYD == =<O"

Pal(i) PB(i) Pc(i)



PHD: Network 2
Structure ==Structure

For each residue, consider

a window of size 17: 3 values

3 values
17x3=51 values —

——

o o
< »

—_— Network2 —

CTMO-H0O VZ<ODUTWOOUMmMYOD =<0

MO0 WZ<OUUTWODOQUMmMYD == =<O"
MO0 WZ<OUDUYODOUMmYD ===<0

Pa(i) PP(i) Pcli) Pai) PR(i) Pc(i)



PhD summary

First methods with >70% Q3

Correct length distributions

Much better beta strand predictions

Good correlation between score and accuracy

Better predictions for larger multiple
sequence alignments



3rd generation methods

* enhanced evolutionary sequence
information (PSI-BLAST profiles) and larger
sequence databases takes Q3 to > 75%

e PHD and PSIPRED are the best known
methods



PSIPRED

Similar to PhD

Psiblast to detect more remote homologs
only two layers

SVM or NN gives similar performance



~

structure prediction based
on position specific scoring

(Jones. Protein secondary
matrices. J. Mol. Biol.

202 (1999)
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Performances
(monitored at CASP)

cAsP  YEAR _7O9T a3 Group
Targets
Rost
CASP1 1994 6 63 and
Sander
Rost
CASP2 1996 24 70 oS
CASP3 1998 18 75 Jones

CASP4 2000 28 80 Jones




Current Status of Secondary Structure predictions

* Best Methods
— PsiPred
— Sam-T02
— Prof
 About 75%-76% accuracy
* Improvement mainly due to:
— Larger Databases
— PSI-BLAST



Other secondary structure
prediction methods

turn prediction

transmembrane helix prediction
coiled coil

Dissorder predictions

contact prediction, disulphides



Secondary Structure Prediction

-Available servers:

- JPRED : http://www.compbio.dundee.ac.uk/~www-jpred/

-PHD:  http://cubic.bioc.columbia.edu/predictprotein/

- PSIPRED: http://bioinf.cs.ucl.ac.uk/psipred/

- NNPREDICT: http://www.cmmpharm.ucsf.edu/~nomi/nnpredict.html

- Chou and Fassman: http://fasta.bioch.virginia.edu/fasta www/chofas.htm

-Interesting paper:

- Rost and Eyrich. EVA: Large-scale analysis of secondary structure
prediction. Proteins 5:192-199 (2001)



What is the use?

* No 3D means no clues to detailed function,
SO...

* Accurate secondary structure predictions
help sequence analysis: finding
homologues, aligning homologues,
identifying domain boundaries.

* Can help true 3D prediction



But the information isn't there

* Prediction quality has not improved much
even with huge growth of training data.

e Secondary structure is not completely
determined by local forces

— Long distance interactions do not appear in sliding
window
* Empirical studies show same amino acid
sequences can assume multiple secondary
structures.



Secondary structure predictions

lgnore 3D, it's too hard!
— Usually concentrate on helix, strand and " coil".
Pattern recognition, but which patterns?

some amino acids have preferences for helix or strand; due to
geometry and hydrogen bonding

spatial (along sequence) patterns, alternating hydrophobics (helical
wheel)

conservation (down alignment) in different members of protein
family; insertions and deletions

Three main generations/stages in SSP method development since
1970's.



CASP

Critical Assessment of Techniques for Protein Structure Prediction

* Why do we have CASP ?
— People cheat!

* people work hard to make prediction programs work for their
favourite proteins, but...

— benchmarking may be polluted by “‘information leakage"
e Difficult to compare methods fairly
* software and data issues
» different measures, standards

 What we want is fully blind trials of prediction methods by a
third party, i.e. CASP



CASP changed the landscape

* Critical Assessment of Structure Prediction competition. Even
numbered years since 1994

— Solved, but unpublished structures are posted in May,
predictions due in September, evaluations in December

— Various categories
* Relation to existing structures, ab initio, homology, fold, etc.
e Partial vs. Fully automated approaches

— Produces lots of information about what aspects of the
problems are hard, and ends arguments about test sets.

* Results showing steady improvement, and the value of
integrative approaches.



CASP

JAN-APR MAY JUN JUL AUG SEP OCT NOV
=3
= Structure determination
o
=
e Give sequences to Organisers
1]
E Keep structures secret (if known)
=5
b= Give structures to Organisers

Organisers

Predict Structure

wait nervousl
from Sequence { o y)

Call for structures

Publish seqs on www

Collect predictions

DEC

4 day meeting to discuss resulits



