Intrinsic disorder proteins

Peter Tompa

Keith Dunker

Institute of Enzymology Hungarian Academy of Sciences Budapest, Hungary

CCBB & IUSM Indiana University Indianapolis, USA

Why do we study disorder proteins?

- 1) Gap in knowledge (1600 vs. thousands of IUPs)
- 2) Structural genomics initiatives
- 3) Bioinformatics studies
- 4) Single protein studies

Analysis of Signaling Interactions

- Examined each interaction on Pawson's website.
- Almost all of the interactions involved ordered regions binding to disordered partners.
- Conclusion: if Pawson's examples are typical, then a very significant proportion of proteinprotein signaling interactions use disordered regions.

Parallel Paradigms

Catalysis

AA seq → 3-D Structure → Function

Signaling

AA seq → Disordered → Function Ensemble

Disorder and Function

Category	Change	Example s	Descriptions
Molecular Recognition	D→O	113	Inter- and Intra-protein, ssDNA, dsDNA, tRNA, rRNA, mRNA, nRNA, bilayers, ligands, co- factors, metals
Protein Modification	Variable	36	Acetylation, fatty acylation, glycosylation, methylation, phosphorylation, ADP- ribosylation, ubiquitination, proteolytic digestion
Entropic Chains	Variable	17	Linkers, spacers, bristles, clocks, springs, detergents, self-transport

Basic approaches to predict disorder

Machine learning
Structural approach

The unusual AA composition of IDPs

Dunker et al. (2001) J. Mol. Graph. Model. 19, 26

AA feature space: AAindex database http://www.genome.jp/aaindex

A number is associated with every amino acid, which quantitatively describes how characteristic the given feature is to the AA (has 566 different scales at present)

Based on AA compositions, two things you might not want to do...

- 1) low complexity regions
- 2) regions w/o secondary structure

Low complexity regions

Sequence databases contain a lot of regions in which only a few amino acids occur (simple), or some dominate (biased), this can be described by an entropy function - Wootton (1993)

> Shannon`s entropy

$$K_2 = -\sum_{i=1}^{N} \frac{n_i}{L} \left(\log_2 \frac{n_i}{L} \right)$$

L > 20; window size, N alphabet size (20), n_i: az i. aminosav száma

...may correspond to disorder

>SRY_MOUSE TRANSCRIPTIONAL ACTIVAT	OR
qqqqqqqqqqqqfhnhhqqqqqfydhhqqqq qqqqqqqqqfhdhhqqqqqfhdhhqqqqqf dhhhhhqeqqfhdhhqqqqqfhdhqqqqqq qqqqqfhdhhqqqqqfhdhhqqqqqqfhd hqqqqqqfhdhhqqqqqfhdhhqqqqqf hdhhqqqqqfhdhhqqqqqqfhdhhqqqqqq fhdhhqqqqqfhdhhqqqqqqf	1-143 MEGHVKRPMNAFMVWSRGERHKLAQQNPSM QNTEISKQLGCRWKSLTEAEKRPFFQEAQR LKILHREKYPNYKYQPHRRAKVSQRSGILQ PAVASTKLYNLLQWDRNPHAITYRQDWSRA AHLYSKNQQSFYWQPVDIPTGHL 144-366
	367-395

LTYLLTADITGEHTPYQEHLSTALWLAVS

The relationship of low complexity and disorder

PROTEINS: Structure, Function, and Genetics 42:38-48 (2001)

red Protein

Sarner,²⁺ Celeste J. Brown,² and A. Keith Dunker²⁺ State University, Pullman, Washington an, Washington Based on AA compositions, two things you might not want to do...

- 1) low complexity regions
- 2) regions w/o secondary structure

...but there are globular proteins without Secondary structure and IDPs with secondary structure

Radhakrishnan (1998) FEBS Lett. 430, 317

1) Machine learning

Artificial neural network (NN)

Artificial neural networks

Predictor of naturally disordered regions (PONDR®)

Dunker, 1998

Predicting Disordered Regions from Amino Acid Sequence: Common Themes Despite Differing Structural Characterization

Ethan Garner 1Paul Cannon 2Pedro Romero 2

THOUSANDS OF PROTEINS LIKELY TO HAVE LONG DISORDERED REGIONS

PEDRO ROMERO, ZORAN OBRADOVIC

School of Electrical Engineering and Computer Science Washington State University, Pullman, WA 99164

PROTEIN DISORDER AND THE EVOLUTION OF MOLECULAR RECOGNITION: THEORY, PREDICTIONS AND OBSERVATIONS

A. K. DUNKER, E. GARNER, S. GUILLIOT

dunker@mail.wsu.edu Department of Biochemistry & Biophysics, Washington State University, Pullman, WA 99164-4660

Support vector machine (SVM)

How would you classify this data?

But which is best?

Support vectors against which the margin pushes up

This is the simplest SVM, the linear SVM (LSVM)

The maximum margin linear classifier is considered best

2) Structural approach (interaction potential)

The protein non-folding problem

Protein folding problem

How does amino acid sequence determine protein structure ?

Protein non-folding problem

How does amino acid sequence determine the lack of protein structure ?

The protein non-folding porblem

• Globular proteins have special sequences that enable the formation of a large number of favorable interactions

• IDPs contain (disorder-promoting) amino acids, which tend to avoid interacting with each other.

• An IDP thus cannot fold into a low-energy conformation.

A simple implementation, FoldUnfold

Calculates the contact number of amino acids

Estimating the total pairwise interresidue interaction energy of a sequence: IUPred

- 1) Calculate interresidue interaction energies from structure
- 2) Try to estimate the energy without knowing the structure
- 3) Apply the estimation to sequences w/o structure (e.g. to IDPs, which have no structure)

Interresidue interaction energy calculated for known structures

Dosztanyi (2005) J. Mol. Biol. 347, 827

How to estimate the interresidue interaction energy of a protein of unknown structure or w/o structure?

Structure

MODEL		1				
ATOM	1	Ν	MET A	23	2.191	28.312
-4.381						
ATOM	2	CA	MET A	23	2.394	27.327
-3.305						
ATOM	3	С	MET A	23	3.514	26.377
-3.706						
ATOM	4	0	MET A	23	3.589	25.977
-4.867						

Sequence

MKVPPHSIEA EQSVLGGLML DNERWDDVAE RVVADDFYTR PHRHIFTEMA RLQESGSPID LITLAESLER QGQLDSVGGF AYLAELSKNT PSAANISAYA DIVRERAVVR EMIS

Estimated energy per residue

Estimation of pairwise interresidue interaction energy from sequence

The contribution of individual AAs depends on its potential partners, i.e. its neighborhood. A quadratic formula is needed to take this into consideration.

$$E(estimated) / L = \begin{pmatrix} n_A & n_C & \cdots & n_Y \end{pmatrix} \begin{pmatrix} P_{AA} & P_{AC} & \cdots & P_{AY} \\ P_{CA} & P_{CC} & & & \\ \vdots & & \ddots & & \\ P_{YA} & \cdots & \cdots & P_{YY} \end{pmatrix} \begin{pmatrix} n_A \\ n_C \\ \vdots \\ n_Y \end{pmatrix}$$

The relationship between AA composition and energy is given by an optimized 20x20 energy predictor matrix, P_{ii}

$$P_{ij}: \sum_{k}^{\text{Globular}} \left(E_k(calc) - E_k(est) \right)^2 \rightarrow \min$$

Correlation of calculated and estimated interaction energies

Dosztanyi (2005) J. Mol. Biol. 347, 827

The estimated energy for globular proteins and IDPs

Dosztanyi (2005) J. Mol. Biol. 347, 827

Making it position-specific: the IUPred algorithm

IUPred: http://iupred.enzim.hu

-38

Sequence:
Prediction type:
Iong disorder
© short disorder
(e.g. missing residues of X-ray structures)
Output type:
🖲 raw data only
C generate plot
500 🔽 plot window size
SUBMIT

IUPred, p53

www.disprot.org

<u>DisEMBL</u> ™	Intrinsic Protein Disorder Prediction
DISOPRED2	Disorder Prediction Server
<u>DRIPPRED</u>	Web based predictor for disordered regions in proteins
<u>FoldIndex©</u>	Estimate the fold probability of a protein
<u>GlobPlot 2</u>	Intrinsic Protein Disorder, Domain & Globularity Prediction
<u>IUPred</u>	Prediction of Intrinsically Unstructured Proteins
<u>PONDR[®]</u>	Predictors of Natural Disordered Regions
<u>PreLink</u>	Prediction of unfolded segments in a protein sequence based on amino acid composition
<u>RONN</u>	Regional Order Neural Network
<u>VL2</u>	DisProt Predictor of Intrinsically Disordered Regions
<u>VL3, VL3H,</u> <u>VL3E</u>	DisProt Predictor of Intrinsically Disordered Regions

Alternative Splicing and Intrinsic Disorder

- Find proteins with both ordered and disordered regions.
- Find mRNA alternative splicing information for these proteins and map to the ordered and disordered regions.
- For alternatively spliced regions of mRNA, do they code for ordered protein more often or do they code for disordered protein more often?

Structural Studies of AS

Studying the Relationship ID↔AS

ASED dataset:

46 proteins74 characterized AS regions

>19,000 charaterized residues, 35% ID

Results on ASED

Distribution of structurally characterized AS regions

Enlarging the Dataset

Global Results

AS regions disorder distributions in ASED and ASSP

Alternative Splicing and Disorder

- Ordered Proteins: active site residues non-local in sequence, become associated by protein folding
- Disordered Proteins and regions: functional residues localized in sequence
- Functional regions for signaling and regulation are located one after another
- Alternative splicing edits functional sets and thereby leads to regulatory and signaling diversity

Disorder and Cell Signaling

Disorder and Drug Discovery

- The p53-MDM2 interaction is blocked by several drugs; one is in clinical trials and shows promise as an anti-cancer drug.
- The drug molecules bind to the ordered partner, preventing the disordered partner from binding.
- Such interactions are typically weak per unit of surface area, and the interaction surfaces can be small, thus such interactions are ideal drug targets.
- Molecular Kinetics has strategy to find all druggable MoRF-based interactions; bioinformatics indicates that more than one hundred are in cancer-associated proteins.
- Is this approach a new drug discovery pathway?