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How R Works

* R has strict formats for entering commands and referring to
objects; commands that are not properly formatted will not be
evaluated.

() and “” must come in pairs; if not done correctly, R will indicate
command is not finished, or will return error

R is case-sensitive, except for file names on Windows/Mac
Plot != plot but “myfile.txt” == “MyFile.txt”

Spaces generally do not matter, except within quotes
temp<-c(1,2) ==temp<-c(1,2)

e To use \ must use \\, else use /



Getting Help and Codes

* Help: ?function or help(function)

for example: ?read.table or ??read.table

* Html help:

1) type help.start()
2) Menu: help—2>html help



Help for functions

* typein ?rownames

* Anatomy of a help page:

* very top: main.function (package)

 Title

* Sections:
* Description
* Usage: names arguments in order with (usually) default values
* Arguments: description and possible input
* Details: further information
* Value: the output of the function
... possibly other sections
* Note: any other useful information
* References: see for more information, what to cite
* See Also: related functions
e Examples: how can be used



Command-line

*R has a command-line driven interface; entered commands
are evaluated and the proper output is returned

2+2

3*3

3+8*2
log10(1000)
log2(8)
abs(-10)
sqrt(81)



2 key concepts in R

1. Object

1. Holds information

2. “class” of the object depends on type/s and arrangement of
information

2. Function
1. Pre-written code to perform specific commands
2. Typically used on objects



“types” of information or objects

Most common:
Numeric -1, 2, 426, 4500, etc.
Character — “a”, “B”, “data”, “cell line”, etc.
Factor — reads as character, but treated as categorical
Logical — TRUE or FALSE
T F
1 0

Missing - NA to indicate missing values



Common object “classes”

vector — a series of data, all of the same type

matrix — multiple columns of same length, all must have the same
type of data

data.frame — multiple columns of same length, can be mix of data
types

list — a collection of other objects; each item in the list can be a
separate type of object

function —a commandin R



Naming Objects

* In R, use “<-” to create objects; what’s on the left side is the
object name and can be almost anything.

X <-4

e Object names can consist of letters, numbers, periods* and
underscores.

* Cannot start with a number; best to start with letter.
* e.g., X, mydata, mydata_normalized, TrtRep2

e Check to make sure desired object name is not already a function

?objectname

*best practice is to not use . because it means something very different in R



How to use functions

* Functions are indicated by parentheses — ()
sqrt(81)

* “Arguments” are the input to functions within () and are
separated by commas
() 0 arguments
rm(myobject) 1 argument
cbind(x1, x1 + 1) 2 arguments

* Most functions have > 1 argument; input can either be
listed in order, or associated by name.

write.table(object, “outputname.txt”, FALSE)
write.table(object, append = FALSE, file = “outputname.txt”)



Functions for Exploring Objects

str() — overall structure of the object
class() — gives the "class" of the object
length() — gives the number of entries in 1D objects (vector, list)

dim(), nrow(), ncol() — gives number of rows/columns for 2D
objects (matrix, data.frame)

names() — gives/sets names of list items or data.frame columns

rownames(), colnames() — gives/sets row & column names of a
matrix or data.frame



How to use functions Il

* R add-on packages - sets of functions that do particular things.

* ONCE only per R version: packages need to be installed (see the
R Installation guide).

* EVERY time you open R: packages need to be loaded
library(edgeR)

* “Error in library(edgeR) : there is no package called
‘edgeR’ — package has not been installed yet

e "Error: could not find function "xxxx" " — package has probably
not been loaded from library.

back to demo...



Subsetting objects

[ and S are the main base R ways to subset:

use [ ] to subset 1D objects (vector, list)

use [, ] to subset 2D objects (matrix, data.frame)

* rows first, then columns

inside [ ] or [, ] can be positions, names in quotes or TRUE/FALSE
values.

e Can also be used to re-order objects

S can pull out a named column from a data.frame or a named
itemin a list

a S must be followed by the name



Subsetting Lists

If list x is a train carrying objects, then:
e X[4:6] is a train of cars 4-6

e Xx[5] is a train of just car 5



How to quit R
e Command line: g()
 or in RStudio/Rgui, top right corner X of window
* Default prompt asking whether you want to save the
workspace image

* If pick "Yes", will save objects in workspace as unnamed
.RData file and commands as unnamed .Rhistory in current
working directory; DO NOT GET IN THE HABIT OF USING THIS!

* If pick "No", will lose objects and codes unless you have saved
them elsewhere; despite risk, this is best for reproducible
research

* If pick "Cancel", return to R



Goal of Clustering

* Given a set of data points, each described by a set of
attributes, find clusters such that:

* Inter-cluster similarity is F1 X
maximized %g )2(

* Intra-cluster similarity is %gx
minimized

F2
* Requires the definition of a similarity measure



Defining Distance Measures

Slide from Eamonn Keogh

Definition: Let O, and O, be two objects from the universe of
possible objects. The distance (dissimilarity) between O, and
O, is a real number denoted by D(O,,0,)

B d



Slide based on one by Eamonn Keogh

What properties should a distance measure
have?

 D(A,B) = D(B,A) Symmetry

*D(AA)=0 Constancy of Self-Similarity
« D(AB)=0iif A=B Positivity (Separation)

« D(A,B) < D(A,C) + D(B,C) Triangular Inequality



Slide based on one by Eamonn Keogh

Two Types of Clustering

 Partitional algorithms: Construct various partitions and
then evaluate them by some criterion

 Hierarchical algorithms: Create a hierarchical
decomposition of the set of objects using some criterion
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Bottom-Up (agglomerative): Starting This slide and next 4 based on
with each item in its own cluster, slides by Eamonn Keogh

find the best pair to merge into a

new cluster. Repeat until all clusters
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Bottom-Up (agglomerative): Starting
with each item in its own cluster,
find the best pair to merge into a
new cluster. Repeat until all clusters
are fused together.
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Bottom-Up (agglomerative): Starting
with each item in its own cluster,
find the best pair to merge into a
new cluster. Repeat until all clusters
are fused together.
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Bottom-Up (agglomerative): Starting
with each item in its own cluster,
find the best pair to merge into a
new cluster. Repeat until all clusters
are fused together.
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Slide based on one by Eamonn Keogh

We know how to measure the distance between
two objects, but defining the distance between
an object and a cluster, or defining the distance
between two clusters is non obvious.

« Single linkage (nearest neighbor): In this method the
distance between two clusters is determined by the distance of the two
closest objects (nearest neighbors) in the different clusters.

« Complete linkage (furthest neighbor): In this method, the
distances between clusters are determined by the greatest distance
between any two objects in the different clusters (i.e., by the "furthest

neighbors").

* Group average linkage: In this method, the distance between
two clusters is calculated as the average distance between all pairs of

objects in the two different clusters.



Hierarchical clustering

library(datasets)

head(mtcars)

cars <- mtcars|, c(1:4, 6:7, 9:11)] # Select variables
?hclust

hc <- hclust(dist(cars), "ave"

?rect.hclust

rect.hclust(hc, k=2, border="blue")

rect.hclust(hc, k=4, border=“pink")



Slide based on one by Eamonn Keogh

Partitional Clustering

Nonhierarchical, each instance is placed in
exactly one of K non-overlapping clusters.

Since only one set of clusters is output, the
user normally has to input the desired
number of clusters K.
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Partition Algorithm 1: k-means

1. Decide on a value for k.
2. Initialize the k cluster centers (randomly, if necessary).

3. Decide the class memberships of the N objects by
assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct.

5. If none of the N objects changed membership in the last
iteration, exit. Otherwise goto 3.



K-means Clustering: Step 1

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 2

Algorithm: k-means, Distance Metric: Euclidean Distance

Slide based on one by Eamonn Keogh



K-means Clustering: Step 3

Algorithm: k-means, Distance Metric: Euclidean Distance
5
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K-means Clustering: Step 4

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 5

Algorithm: k-means, Distance Metric: Euclidean Distance
5
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Comments on k-Means

e Strengths

* Relatively efficient: O(tkn), where n is # objects, k is # clusters,
and t is # iterations. Normally, k, t << n.

e Often terminates at a local optimum.

* Weakness

* Applicable only when mean is defined, then what about
categorical data?

* Need to specify k, the number of clusters, in advance
* Unable to handle noisy data and outliers
* Not suitable to discover clusters with non-convex shapes

Slide based on one by Eamonn Keogh



K-means clustering

library(datasets)

head(mtcars)

cars <- mtcars|, c(1:4, 6:7, 9:11)] # Select variables
?kmeans

par(mfrow=c(2,1))

hc <- kmeans(dist(cars), 3)
plot(dist(cars),col=hcScluster)

hc <- kmeans(dist(cars), 5)
plot(dist(cars),col=hcScluster)



Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector p and covariance matrix .
of original points

2. Compute eigenvectors and eigenvalues of X
3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y = Alx —p)

where v is the new point, x is the old one,
and the rows of A are the eigenvectors



Whyy = A(x —u) (1)

Assume you have the gene expression data
(n genes and m experiments).
X=(xij),i=1t0m, j=1ton

Normalize the gene expression so that the expression of each gene has
mean 0 variance 1. Assume the normalized expression data is still X.

X'X
This product is actually calculate the covariance of the gene expression.



Whyy = A(x —u) (2)

X'X is symmetric and have eigenvalues and eigenvectors.
X'Xt = At, where t is a vector of m dimensions, t is the eigenvector.

Rayleigh quotient
https://en.wikipedia.org/wiki/Rayleigh quotient




Whyy = A(x —u) (3)

Define A = (t4, t5, ..., t,), where each t; is the normalized eigenvector
for the matrix X'X. We have X'XA = AA, where A is the diagonal
matrix of the eigenvalues.

A X'XA= ANM=ANA'A=A

Rayleigh quotient
https://en.wikipedia.org/wiki/Rayleigh quotient




A simple video on PCA concept

https://www.youtube.com/watch?v=HMOI_|kzW08



Principle Component Analysis

library(datasets)

head(mtcars)

cars <- mtcars|, c(1:4, 6:7, 9:11)] # Select variables
pc<-prcomp(cars, center=T, scale=T)

summary(pc)

names(pc)

plot(pc)

biplot(pc)



What is “Linear”?

e Remember this:
e Y=mX+B?




What'’s Slope?

A slope of 2 means that every 1-unit change in X
yields a 2-unit change in .



Prediction

If you know something about X, this knowledge helps you
predict something about Y. (Sound familiar?...sound like
conditional probabilities?)



Regression equation...

Expected value of y at a given level of x=

E(y,/x;)=a+ px




Predicted value for an individual...

— sk
y= o+ p*x, + |random error,
\ J \\\\
Y
Follows a normal

Fixed — distribution
exactly

on the
line




Assumptions (or the fine print)

* Linear regression assumes that...
* 1. The relationship between X and Y is linear
e 2. Y is distributed normally at each value of X

» 3. The variance of Y at every value of X is the same
(homogeneity of variances)

* 4. The observations are independent



The standard error of Y given X is the average variability around the
regression line at any given value of X. It is assumed to be equal at all
values of X.

Sv/XT.
8
y/i’




Regression Picture

*Least squares estimation
X gave us the line (B) that
" " minimized C?
—\ 2 A — 2 ~ b
Doy =M= (P, -+ Ji— v
i=1 i=1
R2=SSreg/SStotal

A? B2 C2

SS‘OtaI Ssreg Ssresidual
Total squared distance of Distance from regression line to naive mean of y Variance around the regression line

observations from naive mean of y  Variability due to x (regression)

Total variation

Additional variability not explained
by x—what least squares method aims
to minimize



Continuous outcome (means)

Ttest: compares means between
two independent groups

ANOVA: compares means
between more than two
independent groups

Pearson’s correlation
coefficient (linear

correlation): shows linear
correlation between two continuous
variables

Linear regression:
multivariate regression technique
used when the outcome is
continuous; gives slopes

Paired ttest: compares means
between two related groups (e.g.,
the same subjects before and after)

Repeated-measures
ANOVA: compares changes over
time in the means of two or more
groups (repeated measurements)

Mixed models/GEE

modeling: multivariate regression
techniques to compare changes over
time between two or more groups;
gives rate of change over time

Non-parametric statistics

Wilcoxon sign-rank test: non-
parametric alternative to the paired
ttest

Wilcoxon sum-rank test
(=Mann-Whitney U test): non-
parametric alternative to the ttest

Kruskal-Wallis test: non-
parametric alternative to ANOVA

Spearman rank correlation

coefficient: non-parametric
alternative to Pearson’s correlation
coefficient




regression

library(datasets)
?USJudgeRatings
head(USJudgeRatings)
data<-USJudgeRatings
x<-as.matrix(data[-12])
y<-data[,12]
regl<-Im(y~x)

regl<-Im(RTEN~CONT+INTG+DMNR+DILG+CFMG+DECI+PREP+FAMI+ORAL+WRIT+PHYS,
data=USJudgeRatings)

summary(regl)
names(regl)
anova(regl)
coef(regl)
resid(regl)
hist(residuals(regl))



LASSO Regression

* Since we wish to discourage extreme values in model parameter, we need to choose a _
regularization term that penalizes parameter magnitudes. For our loss function, we will again
use MSE.

* Together our regularized loss function is:

* Note that is the I, norm of the vector

n J

1
Liasso(B) = - E |y —,BT%'\2 + A 1551
i=1

J
;lﬁjl 7

> 1Bl = 18l

j=1



Choosing A

In LASSO regression, we see that the larger our choice of the regularization
parameter A, the more heavily we penalize large values in S,

If A is close to zero, we recover the MSE, i.e. LASSO regression is just ordinary
regression.

If A is sufficiently large, the MISE term in the regularized loss function will be
insignificant and the regularization term will force s, to be close to zero.

To avoid ad-hoc choices, we should select A using cross-validation.



The Geometry of Regularization (LASSO)

1
* Liasso(B) = -Ziz1 lyi — B x|* + AT 1B)] BL4SS0 = argmin L; 4550 (B)

J
12| pLAsso| = ¢
j=1

54



The Geometry of Regularization (LASSO)

I
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LASSO visualized

p
l— — Lasso estimator
B,

The Lasso estimator tends to zero out
parameters as the OLS loss can easily intersect
with the constraint on one of the axis.

weights

LASSO coefficients as a function of the regularization

0 20 40 60 80 100
alpha

The values of the coefficients decrease as
lambda increases, and are nullified fast.

56



LASSO - Computational complexity

LASSO has no conventional analytical solution, as the L1 norm has no derivative
at 0. We can, however, use the concept of subdifferential or subgradient to find
a manageable expression. See a—sec2 for details.



Lasso regularization with validation only: step
by step
1. split data into {{X,Y}train X, Y vatiaation 1X, Y Jeest}

2. for Ain{Ain - Amax }:

A. determine the B that minimizes the Ljgeo, Plasso (1), Using
the train data. This is done using a solver.

B. record Lysp(4) using validation data

3. gselect the A that minimizes the loss on the validation data, AMasso=
argmin, Ly (1)

4. Refit the model using both train and validation data,
{{X Y}tram: X, Y}valldatlon} resulting to .Blasso(/llasso)

5. report MSE or R2 on {X,Y}ess given the Bigsso(Aigsso)



regression

install.packages("pacman")

library(pacman)

p_load(lars,caret)

data<-USJudgeRatings Lar: least Angel Regression;
x<-as.matrix(data[-12]) lasso: least absolute shrinkage and selection operator

y<-data[,12]

stepwise<-lars(x,y, type=“stepwise”)
forward<-lars(x,y, type=forward.stagewise”)
lar<-lars(x,y,type="lar”)
lasso<-lars(x,y,type="“lasso”)

LassoSbetal[,1]

rm(list=Is())



Other references

* https://www.youtube.com/watch?v= V8eKsto3Ug
e https://www.youtube.com/watch?v=fAPCaue8UKQ




