R programming
clustering, PCA, regression

Slides 2-15 are modified from https://wiki.illinois.edu/wiki/display/HPCBio/2020+Workshops

Slides 16-24 are modified from https://course.ccs.neu.edu > Clustering_Overview

Slides 42-50 are modified from https://web.stanford.edu > hrp259 > lecture13

Slides 52 to 58 are modified from https://harvard-iacs.qithub.io » presentation

How R Works

* R has strict formats for entering commands and referring to
objects; commands that are not properly formatted will not be
evaluated.

() and “” must come in pairs; if not done correctly, R will indicate
command is not finished, or will return error

R is case-sensitive, except for file names on Windows/Mac
Plot != plot but “myfile.txt” == “MyFile.txt”

Spaces generally do not matter, except within quotes
temp<-c(1,2) ==temp<-c(1,2)

e To use \ must use \\, else use /

Getting Help and Codes

* Help: ?function or help(function)

for example: ?read.table or ??read.table

* Html help:

1) type help.start()
2) Menu: help—2>html help

Help for functions

* typein ?rownames

* Anatomy of a help page:

* very top: main.function (package)

 Title

* Sections:
* Description
* Usage: names arguments in order with (usually) default values
* Arguments: description and possible input
* Details: further information
* Value: the output of the function
... possibly other sections
* Note: any other useful information
* References: see for more information, what to cite
* See Also: related functions
e Examples: how can be used

Command-line

*R has a command-line driven interface; entered commands
are evaluated and the proper output is returned

2+2

3*3

3+8*2
log10(1000)
log2(8)
abs(-10)
sqrt(81)

2 key concepts in R

1. Object

1. Holds information

2. “class” of the object depends on type/s and arrangement of
information

2. Function
1. Pre-written code to perform specific commands
2. Typically used on objects

“types” of information or objects

Most common:
Numeric -1, 2, 426, 4500, etc.
Character — “a”, “B”, “data”, “cell line”, etc.
Factor — reads as character, but treated as categorical
Logical — TRUE or FALSE
T F
1 0

Missing - NA to indicate missing values

Common object “classes”

vector — a series of data, all of the same type

matrix — multiple columns of same length, all must have the same
type of data

data.frame — multiple columns of same length, can be mix of data
types

list — a collection of other objects; each item in the list can be a
separate type of object

function —a commandin R

Naming Objects

* In R, use “<-” to create objects; what’s on the left side is the
object name and can be almost anything.

X <-4

e Object names can consist of letters, numbers, periods* and
underscores.

* Cannot start with a number; best to start with letter.
* e.g., X, mydata, mydata_normalized, TrtRep2

e Check to make sure desired object name is not already a function

?objectname

*best practice is to not use . because it means something very different in R

How to use functions

* Functions are indicated by parentheses — ()
sqrt(81)

* “Arguments” are the input to functions within () and are
separated by commas
() 0 arguments
rm(myobject) 1 argument
cbind(x1, x1 + 1) 2 arguments

* Most functions have > 1 argument; input can either be
listed in order, or associated by name.

write.table(object, “outputname.txt”, FALSE)
write.table(object, append = FALSE, file = “outputname.txt”)

Functions for Exploring Objects

str() — overall structure of the object
class() — gives the "class" of the object
length() — gives the number of entries in 1D objects (vector, list)

dim(), nrow(), ncol() — gives number of rows/columns for 2D
objects (matrix, data.frame)

names() — gives/sets names of list items or data.frame columns

rownames(), colnames() — gives/sets row & column names of a
matrix or data.frame

How to use functions Il

* R add-on packages - sets of functions that do particular things.

* ONCE only per R version: packages need to be installed (see the
R Installation guide).

* EVERY time you open R: packages need to be loaded
library(edgeR)

* “Error in library(edgeR) : there is no package called
‘edgeR’ — package has not been installed yet

e "Error: could not find function "xxxx" " — package has probably
not been loaded from library.

back to demo...

Subsetting objects

[and S are the main base R ways to subset:

use [] to subset 1D objects (vector, list)

use [,] to subset 2D objects (matrix, data.frame)

* rows first, then columns

inside [] or [,] can be positions, names in quotes or TRUE/FALSE
values.

e Can also be used to re-order objects

S can pull out a named column from a data.frame or a named
itemin a list

a S must be followed by the name

Subsetting Lists

If list x is a train carrying objects, then:
e X[4:6] is a train of cars 4-6

e Xx[5] is a train of just car 5

How to quit R
e Command line: g()
 or in RStudio/Rgui, top right corner X of window
* Default prompt asking whether you want to save the
workspace image

* If pick "Yes", will save objects in workspace as unnamed
.RData file and commands as unnamed .Rhistory in current
working directory; DO NOT GET IN THE HABIT OF USING THIS!

* If pick "No", will lose objects and codes unless you have saved
them elsewhere; despite risk, this is best for reproducible
research

* If pick "Cancel", return to R

Goal of Clustering

* Given a set of data points, each described by a set of
attributes, find clusters such that:

* Inter-cluster similarity is F1 X
maximized %g)2(

* Intra-cluster similarity is %gx
minimized

F2
* Requires the definition of a similarity measure

Defining Distance Measures

Slide from Eamonn Keogh

Definition: Let O, and O, be two objects from the universe of
possible objects. The distance (dissimilarity) between O, and
O, is a real number denoted by D(O,,0,)

B d

Slide based on one by Eamonn Keogh

What properties should a distance measure
have?

 D(A,B) = D(B,A) Symmetry

*D(AA)=0 Constancy of Self-Similarity
« D(AB)=0iif A=B Positivity (Separation)

« D(A,B) < D(A,C) + D(B,C) Triangular Inequality

Slide based on one by Eamonn Keogh

Two Types of Clustering

 Partitional algorithms: Construct various partitions and
then evaluate them by some criterion

 Hierarchical algorithms: Create a hierarchical
decomposition of the set of objects using some criterion

Hierarchical Partitional
|
| | 1 —

¢ \ 'T%\

N,

Ll

Bottom-Up (agglomerative): Starting This slide and next 4 based on
with each item in its own cluster, slides by Eamonn Keogh

find the best pair to merge into a

new cluster. Repeat until all clusters

are fused together.

Consider all I 1

possible U
merges... B}

Choose

@ =0 \ 3 2 LS
. L0 the best %3 % s

\\I

Bottom-Up (agglomerative): Starting
with each item in its own cluster,
find the best pair to merge into a
new cluster. Repeat until all clusters
are fused together.

Consider all l 2 I 3 I 1 I» 1 Choose I 1 $ 1
H : @A (S ’ ¢ \
possible % S (% % A % the best % % L
merges... ; 5 %
da ~) &
Consider all I 1 $ e I 1 I 1 Choose

the best %

gD
r>a P

possible ¢ o X S
merges. .. % @ &

Bottom-Up (agglomerative): Starting
with each item in its own cluster,
find the best pair to merge into a
new cluster. Repeat until all clusters
are fused together.

Consider all ‘——1

possible @) ¢ ?
merges... % %
Consider all I 1
possible @ X

merges... % %

Consider all I 1 & I 1
possible (. D @ w =¥
merges... % % k

/\\;p

m}]

]

V 2
@@

)

8 .« Choose
J %‘?\ the best

Choose
the best

Choose

the best

| e
D) o

= U

FM
Yo

HBED)
—

AN
/
i \

]

Ve v
HED)
)
;% \

Bottom-Up (agglomerative): Starting
with each item in its own cluster,
find the best pair to merge into a
new cluster. Repeat until all clusters
are fused together.

Consider all
possible

merges... %
Consider all 1_1’—I—L

possible
merges...

Consider all I 1
possible (L (@D ¢
merges... At %

. Choose

the best

Choose
the best

Choose
the best

Slide based on one by Eamonn Keogh

We know how to measure the distance between
two objects, but defining the distance between
an object and a cluster, or defining the distance
between two clusters is non obvious.

« Single linkage (nearest neighbor): In this method the
distance between two clusters is determined by the distance of the two
closest objects (nearest neighbors) in the different clusters.

« Complete linkage (furthest neighbor): In this method, the
distances between clusters are determined by the greatest distance
between any two objects in the different clusters (i.e., by the "furthest

neighbors").

* Group average linkage: In this method, the distance between
two clusters is calculated as the average distance between all pairs of

objects in the two different clusters.

Hierarchical clustering

library(datasets)

head(mtcars)

cars <- mtcars|, c(1:4, 6:7, 9:11)] # Select variables
?hclust

hc <- hclust(dist(cars), "ave"

?rect.hclust

rect.hclust(hc, k=2, border="blue")

rect.hclust(hc, k=4, border=“pink")

Slide based on one by Eamonn Keogh

Partitional Clustering

Nonhierarchical, each instance is placed in
exactly one of K non-overlapping clusters.

Since only one set of clusters is output, the
user normally has to input the desired
number of clusters K.

Slide based on one by Eamonn Keogh

Squared Error

10
T
S y 2 9
sei, =)Nt = Cull*
j:l 7 o
k 6 o
SeK = Zsehj 2
j=1 :
3
2
1

1 2 3 4 56 7 8 9 10
Obijective Function

Slide based on one by Eamonn Keogh

Partition Algorithm 1: k-means

1. Decide on a value for k.
2. Initialize the k cluster centers (randomly, if necessary).

3. Decide the class memberships of the N objects by
assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct.

5. If none of the N objects changed membership in the last
iteration, exit. Otherwise goto 3.

K-means Clustering: Step 1

Algorithm: k-means, Distance Metric: Euclidean Distance
5

@ * o
. @ R
‘k @
@
1 ®
3
®
o ‘k
2 2 ¢ N4
® ° ¢
® o
1 <><> o @
X ® o ¢
0 Ks ¢
0 1 2 3 4 5

Slide based on one by Eamonn Keogh

K-means Clustering: Step 2

Algorithm: k-means, Distance Metric: Euclidean Distance

Slide based on one by Eamonn Keogh

K-means Clustering: Step 3

Algorithm: k-means, Distance Metric: Euclidean Distance
5

& N
& @
4 ® o
k1<> o
@
3
@
IS
2 & °
® N ® °
+@® k3o
1 ok ®
® < o
TS @ o
0
0 1 2 3 4 5

Slide based on one by Eamonn Keogh

K-means Clustering: Step 4

Algorithm: k-means, Distance Metric: Euclidean Distance
5

o N
'S @
4 [R g
k1<> o
@
3
@
IS
2 o ©
L 2 \ ® . o
+@® l k3o
1 ok ®
IS o o
TS @ o
0
0 1 2 3 4 5

Slide based on one by Eamonn Keogh

K-means Clustering: Step 5

Algorithm: k-means, Distance Metric: Euclidean Distance
5

< o ®
- o
9 4 ¢ @
2 e
: T
9 3
= ¢
o ®
) e ® ®
0 J(z ‘k<>
Q4 °® 3 ¢
= ¢ ¢ o
S o0 ® o
O [[[[
0 1 2 3 4 5

expression in condition 1
Slide based on one by Eamonn Keogh

Comments on k-Means

e Strengths

* Relatively efficient: O(tkn), where n is # objects, k is # clusters,
and t is # iterations. Normally, k, t << n.

e Often terminates at a local optimum.

* Weakness

* Applicable only when mean is defined, then what about
categorical data?

* Need to specify k, the number of clusters, in advance
* Unable to handle noisy data and outliers
* Not suitable to discover clusters with non-convex shapes

Slide based on one by Eamonn Keogh

K-means clustering

library(datasets)

head(mtcars)

cars <- mtcars|, c(1:4, 6:7, 9:11)] # Select variables
?kmeans

par(mfrow=c(2,1))

hc <- kmeans(dist(cars), 3)
plot(dist(cars),col=hcScluster)

hc <- kmeans(dist(cars), 5)
plot(dist(cars),col=hcScluster)

Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector p and covariance matrix .
of original points

2. Compute eigenvectors and eigenvalues of X
3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y = Alx —p)

where v is the new point, x is the old one,
and the rows of A are the eigenvectors

Whyy = A(x —u) (1)

Assume you have the gene expression data
(n genes and m experiments).
X=(xij),i=1t0m, j=1ton

Normalize the gene expression so that the expression of each gene has
mean 0 variance 1. Assume the normalized expression data is still X.

X'X
This product is actually calculate the covariance of the gene expression.

Whyy = A(x —u) (2)

X'X is symmetric and have eigenvalues and eigenvectors.
X'Xt = At, where t is a vector of m dimensions, t is the eigenvector.

Rayleigh quotient
https://en.wikipedia.org/wiki/Rayleigh quotient

Whyy = A(x —u) (3)

Define A = (t4, t5, ..., t,), where each t; is the normalized eigenvector
for the matrix X'X. We have X'XA = AA, where A is the diagonal
matrix of the eigenvalues.

A X'XA= ANM=ANA'A=A

Rayleigh quotient
https://en.wikipedia.org/wiki/Rayleigh quotient

A simple video on PCA concept

https://www.youtube.com/watch?v=HMOI_|kzW08

Principle Component Analysis

library(datasets)

head(mtcars)

cars <- mtcars|, c(1:4, 6:7, 9:11)] # Select variables
pc<-prcomp(cars, center=T, scale=T)

summary(pc)

names(pc)

plot(pc)

biplot(pc)

What is “Linear”?

e Remember this:
e Y=mX+B?

What'’s Slope?

A slope of 2 means that every 1-unit change in X
yields a 2-unit change in .

Prediction

If you know something about X, this knowledge helps you
predict something about Y. (Sound familiar?...sound like
conditional probabilities?)

Regression equation...

Expected value of y at a given level of x=

E(y,/x;)=a+ px

Predicted value for an individual...

— sk
y= o+ p*x, + |random error,
\ J \\\\
Y
Follows a normal

Fixed — distribution
exactly

on the
line

Assumptions (or the fine print)

* Linear regression assumes that...
* 1. The relationship between X and Y is linear
e 2. Y is distributed normally at each value of X

» 3. The variance of Y at every value of X is the same
(homogeneity of variances)

* 4. The observations are independent

The standard error of Y given X is the average variability around the
regression line at any given value of X. It is assumed to be equal at all
values of X.

Sv/XT.
8
y/i’

Regression Picture

*Least squares estimation
X gave us the line (B) that
" " minimized C?
—\ 2 A — 2 ~ b
Doy =M= (P, -+ Ji— v
i=1 i=1
R2=SSreg/SStotal

A? B2 C2

SS‘OtaI Ssreg Ssresidual
Total squared distance of Distance from regression line to naive mean of y Variance around the regression line

observations from naive mean of y Variability due to x (regression)

Total variation

Additional variability not explained
by x—what least squares method aims
to minimize

Continuous outcome (means)

Ttest: compares means between
two independent groups

ANOVA: compares means
between more than two
independent groups

Pearson’s correlation
coefficient (linear

correlation): shows linear
correlation between two continuous
variables

Linear regression:
multivariate regression technique
used when the outcome is
continuous; gives slopes

Paired ttest: compares means
between two related groups (e.g.,
the same subjects before and after)

Repeated-measures
ANOVA: compares changes over
time in the means of two or more
groups (repeated measurements)

Mixed models/GEE

modeling: multivariate regression
techniques to compare changes over
time between two or more groups;
gives rate of change over time

Non-parametric statistics

Wilcoxon sign-rank test: non-
parametric alternative to the paired
ttest

Wilcoxon sum-rank test
(=Mann-Whitney U test): non-
parametric alternative to the ttest

Kruskal-Wallis test: non-
parametric alternative to ANOVA

Spearman rank correlation

coefficient: non-parametric
alternative to Pearson’s correlation
coefficient

regression

library(datasets)
?USJudgeRatings
head(USJudgeRatings)
data<-USJudgeRatings
x<-as.matrix(data[-12])
y<-data[,12]
regl<-Im(y~x)

regl<-Im(RTEN~CONT+INTG+DMNR+DILG+CFMG+DECI+PREP+FAMI+ORAL+WRIT+PHYS,
data=USJudgeRatings)

summary(regl)
names(regl)
anova(regl)
coef(regl)
resid(regl)
hist(residuals(regl))

LASSO Regression

* Since we wish to discourage extreme values in model parameter, we need to choose a _
regularization term that penalizes parameter magnitudes. For our loss function, we will again
use MSE.

* Together our regularized loss function is:

* Note that is the I, norm of the vector

n J

1
Liasso(B) = - E |y —,BT%'\2 + A 1551
i=1

J
;lﬁjl 7

> 1Bl = 18l

j=1

Choosing A

In LASSO regression, we see that the larger our choice of the regularization
parameter A, the more heavily we penalize large values in S,

If A is close to zero, we recover the MSE, i.e. LASSO regression is just ordinary
regression.

If A is sufficiently large, the MISE term in the regularized loss function will be
insignificant and the regularization term will force s, to be close to zero.

To avoid ad-hoc choices, we should select A using cross-validation.

The Geometry of Regularization (LASSO)

1
* Liasso(B) = -Ziz1 lyi — B x|* + AT 1B)] BL4SS0 = argmin L; 4550 (B)

J
12| pLAsso| = ¢
j=1

54

The Geometry of Regularization (LASSO)

I
N

LASSO visualized

p
l— — Lasso estimator
B,

The Lasso estimator tends to zero out
parameters as the OLS loss can easily intersect
with the constraint on one of the axis.

weights

LASSO coefficients as a function of the regularization

0 20 40 60 80 100
alpha

The values of the coefficients decrease as
lambda increases, and are nullified fast.

56

LASSO - Computational complexity

LASSO has no conventional analytical solution, as the L1 norm has no derivative
at 0. We can, however, use the concept of subdifferential or subgradient to find
a manageable expression. See a—sec2 for details.

Lasso regularization with validation only: step
by step
1. split data into {{X,Y}train X, Y vatiaation 1X, Y Jeest}

2. for Ain{Ain - Amax }:

A. determine the B that minimizes the Ljgeo, Plasso (1), Using
the train data. This is done using a solver.

B. record Lysp(4) using validation data

3. gselect the A that minimizes the loss on the validation data, AMasso=
argmin, Ly (1)

4. Refit the model using both train and validation data,
{{X Y}tram: X, Y}valldatlon} resulting to .Blasso(/llasso)

5. report MSE or R2 on {X,Y}ess given the Bigsso(Aigsso)

regression

install.packages("pacman")

library(pacman)

p_load(lars,caret)

data<-USJudgeRatings Lar: least Angel Regression;
x<-as.matrix(data[-12]) lasso: least absolute shrinkage and selection operator

y<-data[,12]

stepwise<-lars(x,y, type=“stepwise”)
forward<-lars(x,y, type=forward.stagewise”)
lar<-lars(x,y,type="lar”)
lasso<-lars(x,y,type="“lasso”)

LassoSbetal[,1]

rm(list=Is())

Other references

* https://www.youtube.com/watch?v= V8eKsto3Ug
e https://www.youtube.com/watch?v=fAPCaue8UKQ

