Next Generation Sequencing Technologies

Some slides are modified from Robi Mitra’s lecture notes
What will you do to understand a disease?
What will you do to understand a disease?

- Phenotype
- Genotype
- Hypothesis
- Test Hypothesis: By Genetic Manipulation
Forward Genetics

Two groups:
1. Develop Colorectal cancer At Young Age
2. Do not

Mutation in APC Gene

Genotype

Hypothesis

APC is a Tumor Suppressor Gene

Phenotype

Test Hypothesis By Genetic Manipulation

Delete APC in Mouse Control: Isogenic APC+
The Cycle of Forward Genetics

Observation → Phenotype → Hypothesis → Test Hypothesis → Gene Deletion/Replacement

Genotype

In 2005 $9 million/genome Not feasible

Sequencing

Genetic Manipulation by Recombinant Technology
End Runs

- Linkage Studies (Humans, Model Organisms)
- Association Studies (GWAS)

BUT, these end runs have a cost!

1. Requires a large family (many crosses in model organisms); very difficult to analyze multi-factorial traits
2. Common variants
The Problem with Forward Genetics

Sequencing

Observation

Phenotype

Gene Deletion/Replacement

Thinking

Genotype

Hypothesis

Test Hypothesis

By Genetic Manipulation

Recombinant Technology

2008

$60,000 /genome

Cost is rapidly dropping
Bp/US dollar: increases exponentially with time

Adapted from Jay Shendure et al 2004
Two questions:

- How was this dramatic acceleration achieved?
- What will it mean?
How was this achieved?

- Integration (Think about sequencing pipeline)
- Parallelization
- Miniaturization

Same concepts the revolutionarized integrated circuits

Plus one additional insight

Read length is Not as important for resequencing
Read Length is Not As Important For Resequencing

% of Paired K-mers with Uniquely Assignable Location

Length of K-mer Reads (bp)

E.COLI
HUMAN

Jay Shendure
Second generation sequencers

• 454 Life Sciences (Roche Diagnostics)
 – 25-50 MB of sequences in a single run
 – Up to 500 bases in length

• Solexa (Illumina)
 – 1 GB of sequences in a single run
 – 35 bases in length

• SOLiD (Applied Biosystems)
 – 6 GB of sequences in a single run
 – 35 bases in length
Comparing Sequencers

<table>
<thead>
<tr>
<th></th>
<th>Roche (454)</th>
<th>Illumina</th>
<th>SOLiD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>Pyrosequencing</td>
<td>Polymerase-based</td>
<td>Ligation-based</td>
</tr>
<tr>
<td>Amplification</td>
<td>Emulsion PCR</td>
<td>Bridge Amp</td>
<td>Emulsion PCR</td>
</tr>
<tr>
<td>Paired ends/sep</td>
<td>Yes/3kb</td>
<td>Yes/200 bp</td>
<td>Yes/3 kb</td>
</tr>
<tr>
<td>Mb/run</td>
<td>100 Mb</td>
<td>1300 Mb</td>
<td>3000 Mb</td>
</tr>
<tr>
<td>Time/run</td>
<td>7 h</td>
<td>4 days</td>
<td>5 days</td>
</tr>
<tr>
<td>Read length</td>
<td>250 bp</td>
<td>32-40 bp</td>
<td>35 bp</td>
</tr>
<tr>
<td>Cost per run (total)</td>
<td>$8439</td>
<td>$8950</td>
<td>$17447</td>
</tr>
<tr>
<td>Cost per Mb</td>
<td>$84.39</td>
<td>$5.97</td>
<td>$5.81</td>
</tr>
</tbody>
</table>

From Stefan Bekiranov, Univ of Virginia, 2008
NGS Technology Comparison

<table>
<thead>
<tr>
<th></th>
<th>ABI SOLiD</th>
<th>Illumina GA</th>
<th>Roche FLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>SOLiD 4: $495k</td>
<td>Ile: $470k</td>
<td>Titanium: $500k</td>
</tr>
<tr>
<td></td>
<td>SOLiD PI: $240k</td>
<td>Ilx: $250k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HiSeq: $690k</td>
<td></td>
</tr>
<tr>
<td>Quantity of</td>
<td>SOLiD 4: 100Gb</td>
<td>Ile: 20 - 38 Gb</td>
<td>450 Mb</td>
</tr>
<tr>
<td>Data per</td>
<td>SOLiD PI: 50Gb</td>
<td>Ilx: 50 – 95 Gb</td>
<td></td>
</tr>
<tr>
<td>run</td>
<td></td>
<td>HiSeq: 200Gb +</td>
<td></td>
</tr>
<tr>
<td>Run Time</td>
<td>7 Days</td>
<td>4 Days</td>
<td>9 Hours</td>
</tr>
<tr>
<td>Pros</td>
<td>Low error rate due to</td>
<td>Most widely used</td>
<td>Short run time. Long</td>
</tr>
<tr>
<td></td>
<td>dibase probes</td>
<td>NGS platform. Requires</td>
<td>reads better for de novo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>least DNA</td>
<td>sequencing</td>
</tr>
<tr>
<td>Cons</td>
<td>Long run times. Has</td>
<td>Least multiplexing</td>
<td>Expensive reagent cost.</td>
</tr>
<tr>
<td></td>
<td>been demonstrated</td>
<td>capability of the 3.</td>
<td>Difficulty reading</td>
</tr>
<tr>
<td></td>
<td>certain reads don’t</td>
<td>Poor coverage of AT rich</td>
<td>homopolymer regions</td>
</tr>
<tr>
<td></td>
<td>match reference</td>
<td>regions</td>
<td></td>
</tr>
</tbody>
</table>

London Local Genomics Center April 1, 2010 NGS meeting
Work flow of the second generation

Library preparation is accomplished by random fragmentation of DNA, followed by in vitro ligation of common adaptor sequences.

The generation of clonally clustered amplicons to serve as sequencing features can be achieved by several approaches, including in situ polonies, emulsion PCR or bridge PCR. What is common to these methods is that PCR amplicons derived from any given single library molecule end up spatially clustered, either to a single location on a planar substrate (in situ polonies, bridge PCR), or to the surface of micron-scale beads, which can be recovered and arrayed (emulsion PCR).

The sequencing process itself consists of alternating cycles of enzyme-driven biochemistry and imaging-based data acquisition. The platforms that are discussed here all rely on sequencing by synthesis, that is, serial extension of primed templates, but the enzyme driving the synthesis can be either a polymerase or a ligase. Data are acquired by imaging of the full array at each cycle (e.g., of fluorescently labeled nucleotides incorporated by a polymerase)
advantages relative to Sanger sequencing

(i) *in vitro* construction of a sequencing library, followed by *in vitro* clonal amplification to generate sequencing features, circumvents several bottlenecks that restrict the parallelism of conventional sequencing (that is, transformation of *E. coli* and colony picking).

(ii) Array-based sequencing enables a much higher degree of parallelism than conventional capillary-based sequencing. As the effective size of sequencing features can be on the order of 1 miu m, hundreds of millions of sequencing reads can potentially be obtained in parallel by rastered imaging of a reasonably sized surface area.

(iii) Because array features are immobilized to a planar surface, they can be enzymatically manipulated by a single reagent volume. Although microliter-scale reagent volumes are used in practice, these are essentially amortized over the full set of sequencing features on the array, dropping the effective reagent volume per feature to the scale of picoliters or femtoliters. Collectively, these differences translate into dramatically lower costs for DNA sequence production.
Technology Overview: Solexa/Illumina Sequencing

Sequencing-By-Synthesis Demo

1. Prepare genomic DNA sample
 Randomly fragment genomic DNA and ligate adapters to both ends of the fragments

http://www.illumina.com/
Immobilize DNA to Surface

Sequencing-By-Synthesis Demo

Adapter
DNA fragment
Dense lawn of primers
Adapter

Attach DNA to surface
Bind single stranded fragments randomly to the inside surface of the flow cell channels.

Source: www.illumina.com
Technology Overview: Solexa Sequencing

Bridge amplification
Add unlabeled nucleotides and enzyme to initiate solid-phase bridge amplification.
First chemistry cycle: determine first base

To initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.
Image of second chemistry cycle is captured by the instrument. After laser excitation, collect the image data as before. Record the identity of the second base for each cluster.
Call Sequence

Sequencing-By-Synthesis Demo

1. **Cycle 1**
 - GCTGA...

2. **Cycle 2**
 - TACGT
3. **Cycle 3**
 - AUCCT
4. **Cycle 4**
 - GACGT
5. **Cycle 5**
 - TACGT

Sequence read over multiple chemistry cycles
Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.
PROCEDURE - Solexa –Cluster Amplification

1) Load Samples to Flow Cell

8 Lanes are loaded onto the flow cell for simultaneous analysis.

2. Attach DNA to Surface

Single stranded DNA fragments bind randomly to the inside surface of the flow cell.

3. Bridge Amplification

Unlabeled nucleotides and enzyme are added to initiate solid-phase bridge amplification.
PROCEDURE - Solexa –Cluster Amplification

4. **Fragments Become Double Stranded**

The enzyme incorporates nucleotides to build double stranded bridges on the solid-phase substrate.

5. **Double Stranded Molecules are Denatured**

Denaturation leaves single-stranded template anchored to the substrate.

6. **Amplification is Completed**

Several million dense clusters of double stranded DNA are generated in each channel of the flow cell.
PROCEDURE - Solexa Sequencing & Genome Analyzer

1. Determine 1st Base

The first sequencing cycle is initiated by adding all 4 labeled reversible terminators, primers, and DNA polymerase to the flow cell.

2. Image 1st Base

After laser excitation, an image of the emitted fluorescence from each cluster on the flow cell is captured.

3. Determine 2nd Base

The 2nd sequencing cycle is initiated by adding all 4 labeled reversible terminators and enzymes.
After laser excitation, image data is collected like before. The identity of the 2nd base for each cluster is recorded.

35 cycles of sequencing are repeated to determine the sequence of bases in a given fragment a single base at a time.

Align data and map the sequences to the reference genome.
Sequencing

DNA (0.01 - 1.0 μg)

Sample preparation

Cluster growth

Sequencing

Image acquisition

Base calling

TGCTACGAT...
Sequencer Output

Image acquisition

Quality Scores

Base calling

Sequence Files

TGCTACGAT...
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>203</td>
<td>322</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>229</td>
<td>353</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>110</td>
<td>436</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>211</td>
<td>303</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
<td>329</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>221</td>
<td>277</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>225</td>
<td>370</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>243</td>
<td>244</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>186</td>
<td>360</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>167</td>
<td>333</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>213</td>
<td>333</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>244</td>
<td>338</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>120</td>
<td>382</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>117</td>
<td>201</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>232</td>
<td>321</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>205</td>
<td>318</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>102</td>
<td>449</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>209</td>
<td>276</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>197</td>
<td>309</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>209</td>
<td>343</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>201</td>
<td>239</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>247</td>
<td>502</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>119</td>
<td>420</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>323</td>
<td>445</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>244</td>
<td>254</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>233</td>
<td>321</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>95</td>
<td>416</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>587</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>119</td>
<td>481</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>239</td>
<td>312</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101</td>
<td>312</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>145</td>
<td>341</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>530</td>
<td>242</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>224</td>
<td>220</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>364</td>
<td>491</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>214</td>
<td>600</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>196</td>
<td>533</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>174</td>
<td>351</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>116</td>
<td>344</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>215</td>
<td>533</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>223</td>
<td>207</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>121</td>
<td>377</td>
</tr>
</tbody>
</table>

Sequence Files

- ~10 million sequences per lane
- ~500 MB files
FASTQ format stores sequences and Phred qualities in a single file. It is concise and compact. FASTQ is first widely used in the Sanger Institute and therefore we usually take the Sanger specification and the standard FASTQ format, or simply FASTQ format. Although Solexa/Illumina read file looks pretty much like FASTQ, they are different in that the qualities are scaled differently. In the quality string, if you can see a character with its ASCII code higher than 90, probably your file is in the Solexa/Illumina format.

Each sequence entry consists of 4 lines:
sequence name after @
sequence
quality score name after + (optional)
quality scores in phred format (http://maq.sourceforge.net/qual.shtml)
FASTQ examples

@EAS54_6_R1_2_1_413_324
CCCTTCTTGTCCTTCAGCGTTTCTCC
+
;;3;;;;;;;;;;;;;;;;;7;;;;;;;;88
@EAS54_6_R1_2_1_540_792
TTGGCAGGCCAAGGCGATGGATCA
+
;;;;;;;;;;;;7;;;;;;;;3;83
@EAS54_6_R1_2_1_443_348
GTTGCTTCTGGCGTGGGTGGGGG
+EAS54_6_R1_2_1_443_348
;;;;;;;;;;;;9;7;;7;393333
Quality Score

• Given a character q, the corresponding Phred quality can be calculated with:
$Q = \text{ord}(q) - 33$; where \text{ord()} gives the ASCII code of a character.

Solexa/Illumina Read Format
The syntax of Solexa/Illumina read format is almost identical to the FASTQ format, but the qualities are scaled differently. Given a character sq, the following Perl code gives the Phred quality Q:
$Q = 10 \times \log(1 + 10^{\frac{\text{ord}(sq) - 64}{10.0}}) / \log(10);
Bioinformatics Challenges

• Rapid mapping of these short sequence reads to the reference genome

• Visualize mapping results
 – Thousand of enriched regions

• Peak analysis
 – Peak detection
 – Finding exact binding sites

• Compare results of different experiments
 – Normalization
 – Statistical tests
Mapping of Short Oligonucleotides to the Reference Genome

• Mapping Methods
 – Need to allow mismatches and gaps
 • SNP locations
 • Sequencing errors
 – Indexing and hashing
 • genome
 • oligonucleotide reads

• Use of quality scores

• Use of SNP knowledge

• Performance
 – Partitioning the genome or sequence reads
Mapping Methods: Indexing the Genome

• Fast sequence similarity search algorithms (like BLAST)
 – Not specifically designed for mapping millions of query sequences
 – Take very long time
 • e.g. 2 days to map half million sequences to 70MB reference genome (using BLAST)
 – Indexing the genome is memory expensive
Sequence analysis

SOAP: short oligonucleotide alignment program

Ruiqiang Li1,2, Yingrui Li1, Karsten Kristiansen2 and Jun Wang1,2,*

1Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China and 2Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, DK-5230, Denmark

Received on November 10, 2007; revised on December 20, 2007; accepted on January 14, 2008
Advance Access publication January 28, 2008
Associate Editor: Keith Crandall

ABSTRACT

Summary: We have developed a program SOAP for efficient gapped and ungapped alignment of short oligonucleotides onto reference sequences. The program is designed to handle the huge amounts of short reads generated by parallel sequencing using the new generation Illumina-Solexa sequencing technology. SOAP is compatible with numerous applications, including single-read or pair-end resequencing, small RNA discovery and mRNA tag sequence mapping. SOAP is a command-driven program, which supports multi-threaded parallel computing, and has a batch module for multiple query sets.

Availability: http://soap.genomics.org.cn
Contact: soap@genomics.org.cn

SOAP will allow either a certain number of mismatch continuous gap for aligning a read onto the reference. The best hit of each read which has minimal r mismatches or smaller gap will be reported. For multiple best hits, the user can instruct the program to report randomly report one, or disregard all of them. Since read length is 25–50 bp, hits with too many mismatches are unreliable which are hard to distinguish with random. By default, the program will allow at most two mismatches between two haplotype genome sequences, occurrence nucleotide polymorphism is much higher than that of insertions or deletions, so ungapped hits have precedence over gapped hits. For gapped alignment only one continuous length with a size ranging from 1 to 3 bp is accepted.
SOAP (Li et al, 2008)

• Both reads and reference genome are converted to numeric data type using 2-bits-per-base coding

• Load reference genome into memory
 – For human genome, 14GB RAM required for storing reference sequences and index tables

• 300(gapped) to 1200(ungapped) times faster than BLAST
SOAP (Li et al, 2008)

- 2 mismatches or 1-3bp continuous gap
- Errors accumulate during the sequencing process
 - Much higher number of sequencing errors at the 3’-end (sometimes make the reads unalignable to the reference genome)
 - Iteratively trim several basepairs at the 3’-end and redo the alignment
 - Improve sensitivity
Mapping Methods: Indexing the Oligonucleotide Reads

- **ELAND** (Cox, unpublished)
 - “Efficient Large-Scale Alignment of Nucleotide Databases” (Solexa Ltd.)
- **SeqMap** (Jiang, 2008)
 - “Mapping massive amount of oligonucleotides to the genome”
- **RMAP** (Smith, 2008)
 - “Using quality scores and longer reads improves accuracy of Solexa read mapping”
- **MAQ** (Li, 2008)
 - “Mapping short DNA sequencing reads and calling variants using mapping quality scores”
Mapping Algorithm (2 mismatches)

GATGCATTGCTATGCCTCCAGTCCGCAACTTCACG

GATGCATTG CTATGCCTC CCAGTCCGC AACTTCACG seeds

GATGCATTG
CTATGCCTC
CCAGTCCGC
AACTTCACG

Exact match

Genome

Indexed table of exactly matching seeds

Approximate search around the exactly matching seeds
Mapping Algorithm (2 mismatches)

- Partition reads into 4 seeds {A,B,C,D}
 - At least 2 seed must map with no mismatches
- Scan genome to identify locations where the seeds match exactly
 - 6 possible combinations of the seeds to search
 - {AB, CD, AC, BD, AD, BC}
 - 6 scans to find all candidates
- Do approximate matching around the exactly-matching seeds.
 - Determine all targets for the reads
 - Ins/del can be incorporated

- The reads are indexed and hashed before scanning genome

- Bit operations are used to accelerate mapping
 - Each nt encoded into 2-bits
ELAND (Cox, unpublished)

- Commercial sequence mapping program comes with Solexa machine
- Allow at most 2 mismatches
- Map sequences up to 32 nt in length
- All sequences have to be same length
Sequence analysis

SeqMap: mapping massive amount of oligonucleotides to the genome

Hui Jiang1, Wing Hung Wong2,*

1 Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, USA.
2 Department of Statistics, Stanford University, Stanford, California 94305, USA.

Associate Editor: Dr. Limsoon Wong

ABSTRACT

Summary: SeqMap is a tool for mapping large amount of short sequences to the genome. It is designed for finding all the places in a reference genome where each sequence may come from. This task is essential to the analysis of data from ultra high throughput sequencing machines. With a carefully designed index-filtering algorithm and an efficient implementation, SeqMap can map tens of millions of short sequences to a genome of several billions of nucleotides. Multiple substitutions and insertions/deletions of the nucleotide bases in the sequences can be tolerated and therefore detected. SeqMap supports FASTA input format and various output formats, and provides command line options for tuning almost every aspect of the mapping process. A typical mapping can be done in a few hours on a desktop PC. Parallel use of SeqMap on a cluster is also very straightforward.

20-32nt to the genome, allowing up to 2 substitutions in the mapping. SOAP (Li, 2008) can also handle up to 2 substitutions, or a gap of 1-3nt without any other substitution. It can also handle longer reads or pair-end reads. RMAP (Smith, 2008) is another program for ungapped mapping, which takes read qualities into account.

Compared to these existing programs, SeqMap offers more flexibility in the mapping. It allows up to 5 mixed substitutions and inserted/deleted nucleotides in the mapping, which is considered sufficient for most mapping applications. FASTA input format and various output formats (e.g., the ELAND format) are supported by SeqMap for the convenience of users. It also provides many command line options for tuning almost every aspect of the mapping process. For instance, SeqMap allows sequences to contain Ns, and to have unequal lengths. Such flexibility is beneficial for the analysis since both sequencing errors and SNPs may cause substi-
Using quality scores and longer reads improves accuracy of Solexa read mapping
Andrew D Smith†, Zhenyu Xuan† and Michael Q Zhang*

Address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
Email: Andrew D Smith - asmith@cshl.edu; Zhenyu Xuan - xuan@cshl.edu; Michael Q Zhang* - mzh@cshl.edu
† Corresponding author † Equal contributors

Published: 28 February 2008 Received: 5 October 2007
Accepted: 28 February 2008

Abstract
Background: Second-generation sequencing has the potential to revolutionize genomics and impact all areas of biomedical science. New technologies will make re-sequencing widely available for such applications as identifying genome variations or interrogating the oligonucleotide content of a large sample (e.g. ChIP-sequencing). The increase in speed, sensitivity and availability of sequencing technology brings demand for advances in computational technology to perform associated analysis tasks. The Solexa/Illumina 1G sequencer can produce tens of millions of reads, ranging in length from ~25–50 nt, in a single experiment. Accurately mapping the reads back to a reference genome is a critical task in almost all applications. Two sources of information that are often ignored when mapping reads from the Solexa technology are the 3' ends of longer reads, which contain a much higher frequency of sequencing errors, and the base-call quality scores.

Results: To investigate whether these sources of information can be used to improve accuracy when mapping reads, we developed the RMAP tool, which can map reads having a wide range of lengths and allows base-call quality scores to determine which positions in each read are more important when mapping. We applied RMAP to analyze data re-sequenced from two human BAC regions for varying read lengths, and varying criteria for use of quality scores. RMAP is freely available for downloading at http://rutai.cshl.edu/rmap/

Conclusion: Our results indicate that significant gains in Solexa read mapping performance can be achieved by considering the information in 3' ends of longer reads, and appropriately using the base-call quality scores. The RMAP tool we have developed will enable researchers to effectively exploit this information in targeted re-sequencing projects.
RMAP (Smith et al, 2008)

• Improve mapping accuracy
 – Possible sequencing errors at 3’-ends of longer reads
 – Base-call quality scores

• Use of base-call quality scores
 – Quality cutoff
 • High quality positions always induce a match
 • Low quality positions are checked for mismatches
 – Quality control step eliminates reads with too many low quality positions

• Allow any number of mismatches
Map to reference genome

- Mapped to a unique location: 7.2 M
 - Quality filter
 - 3 M

- Mapped to multiple locations: 1.8 M

- No mapping: 2.5 M

- Low quality: 0.5 M
Main features

Eland: read length 20-32nt, 2 substitutions
SOAP: 2 substitutions, 1 indel of 1-3nt without any substitutions
RMAP: ungapped mapping, take the tag quality into account
SeqMap: allow <=5 mixture of substitutions and insertions/deletions
Bioinformatics Challenges

• Rapid mapping of these short sequence reads to the reference genome

• Visualize mapping results
 – Thousand of enriched regions

• Peak analysis
 – Peak detection
 – Finding exact binding sites

• Compare results of different experiments
 – Normalization
 – Statistical tests
• BED files are built to summarize mapping results

• BED files can be easily visualized in Genome Browser

http://genome.ucsc.edu
Visualization: Genome Browser

Visualization: Custom

300 kb region from mouse ES cells

Align/Assemble to a reference
- **Bowtie** - Ultrafast, memory-efficient short read aligner. It aligns short DNA sequences (reads) to the human genome at a rate of 25 million reads per hour on a workstation with 2 gigabytes of memory. [Link to discussion thread here](#). Written by Ben Langmead and Cole Trapnell.
- **ELAND** - Efficient Large-Scale Alignment of Nucleotide Databases. Whole genome alignments to a reference genome. Written by Illumina author Anthony Solexa 1G machine.
- **Exonerate** - Various forms of alignment (including Smith-Waterman-Gotoh) of DNA/protein against a reference. Authors are Guy St C Slater and Ewan Birney EMBL-C for POSIX.
- **GMAP** - GMAP (Genomic Mapping and Alignment Program) for mRNA and EST Sequences. Developed by Thomas Wu and Colin Watanabe at Genentec. C.
- **MOSAIK** - Reference guided aligner/assembly. Written by Michael Strömberg at Boston College.
- **MAQ** - Mapping and Assembly with Qualities (renamed from MAPASS2). Particularly designed for Illumina-Solexa 1G Genetic Analyzer, and has preliminary handle ABI SOLID data. Written by Heng Li from the Sanger Centre.
- **MUMmer** - MUMmer is a modular system for the rapid whole genome alignment of finished or draft sequence. Released as a package providing an efficient library, seed-and-extend alignment, SNP detection, repeat detection, and visualization tools. Version 3.0 was developed by Stefan Kurtz, Adam Phillippy, Adam Michael Smoot, Martin Shumway, Corina Antonescu and Steven L Salzberg - most of whom are at The Institute for Genomic Research in Maryland, USA. Pthreads required.
- **Novocraft** - Tools for reference alignment of paired-end and single-end Illumina reads. Uses a Needleman-Wunsch algorithm. Available free for evaluation use and for use on open not-for-profit projects. Requires Linux or Mac OS X.
- **RMAP** - Assembles 20 - 64 bp Solexa reads to a FASTA reference genome. By Andrew D. Smith and Zhenyu Xuan at CSHL. (published in BMC Bioinformatics) OS required.
- **SeqMap** - Works like ELand, can do 3 or more bp mismatches and also INDELS. Written by Hui Jiang from the Wong lab at Stanford. Builds available for many organisms.
- **SHRIMP** - Assembles to a reference sequence. Developed with Applied Biosystem's colurspace genomic representation in mind. Authors are Michael Bruno and Stephen Rumble at the University of Toronto.
- **Slider** - An application for the Illumina Sequence Analyzer output that uses the probability files instead of the sequence files as an input for alignment to a single reference sequence or a set of reference sequences. Authors are from BCGSC. Paper is [here](#).
- **SOAP** - SOAP (Short Oligonucleotide Alignment Program). A program for efficient gapped and ungapped alignment of short oligonucleotides onto reference. Author is Ruiqiang Li at the Beijing Genomics Institute. C++ for Unix.
- **SSAHA** - SSAHA (Sequence Search and Alignment by Hashing Algorithm) is a tool for rapidly finding near exact matches in DNA or protein databases using hashing. Developed at the Sanger Centre by Zemin Ning, Anthony Cox and James Mullikin. C++ for Linux/Alpha.
- **SXOligoSearch** - SXOligoSearch is a commercial platform offered by the Malaysian based Synamatrix. Will align Illuma reads against a range of Refseq genome builds for a number of organisms. Web Portal. OS independent.

* **de novo** Align/Assemble
- **MIRA2** - MIRA (Mimicking Intelligent Read Assembly) is able to perform true hybrid de-novo assemblies using reads gathered through 454 sequencing technology or GS FLX). Compatible with 454, Solexa and Sanger data. Linux OS required.
- **SSAKE** - Version 2.0 of SSAKE (23 Oct 2007) can now handle error-rich sequences. Authors are René Warren, Granger Sutton, Steven Jones and Robert Tett. Canada's Michael Smith Genome Sciences Centre. Perl/Linux.
- **VCAKE** - De novo assembly of short reads with robust error correction. An improvement on early versions of SSAKE.
- **Velvet** - Velvet is a de novo genomic assembler specially designed for short read sequencing technologies, such as Solexa or 454. Need about 20-25X coverage to assemble paired reads. Developed by Daniel Zerbino and Ewan Birney at the European Bioinformatics Institute (EMBL-EBI).
Pacific Biosciences: A Third Generation Sequencing Technology

Eid et al 2008
Applications

- Genomes
- Re-sequencing Human Exons (Microarray capture/amplification)
- small (including mi-RNA) and long RNA profiling (including splicing)
- ChIP-Seq:
 - Transcription Factors
 - Histone Modifications
 - Effector Proteins
- DNA Methylation
- Polysomal RNA
- Origins of Replication/Replicating DNA
- Whole Genome Association (rare, high impact SNPs)
- Copy Number/Structural Variation in DNA
- ChIA-PET: Transcription Factor Looping Interactions
- ???
references
