An introduction to metagenomics

Microbes are everywhere

http://ocean.nationalgeographic.com/ocean/

https://en.wikipedia.org/wiki/Desert

https://www.bcm.edu/departments/molecular-virology-andmicrobiology/research/the-human-microbiome-project

Culture-independent methods are indispensable

more than 99% of organism genomes in the environment are uncultured

http://schaechter.asmblog.org/schaechter/2010/07/the-uncultured-bacteria.html

Metagenomics, the key to the microbial world

Metagenomics is the study of genetic material recovered directly from environmental samples.

THE METAGENOMICS PROCESS

http://blog.openhelix.eu/?p=431

Early history of metagenomics

Norman R Pace propose the idea of cloning DNA directly from environmental samples as early as 1985.

Pace published their study that isolated and cloned bulk DNA from an environmental sample in 1991.

Edward DeLong laid the groundwork for environmental phylogenies based on signature 16S sequences in 1996

In 2002, Mya Breitbart and colleagues used environmental shotgun sequencing to show that 200 liters of seawater contains over 5000 different viruses.

In 2004, Gene Tyson et al acid mine drainage system; Craig Venter et al Global Ocean Sampling Expedition.

In 2005 Stephan C. Schuster et al studied mammoth DNA by 454 sequencer.

Sequencing cost reduced rapidly

Images from http://www.genome.gov/sequencingcosts/

The almost there future

A human genome sequence

• 2000 € 1,000,000,000 in ~10 years

• 2008 € 50 - 100,000 in ~4 months

• 2010 € 5 - 10,000

in ~2 weeks

• ...2015 € 1,000 • ...2020? € 10

in ~1 day

in ~1 hour to minutes

Two types of sequencing

Neither universal nor unique

Three groups of widely used marker genes

	Mean	Mean			SD		Minimum			Median			Maximum		
	с	w	A	с	w	A	с	w	A	с	w	A	с	w	A
fetchMG	99.0	98.6	99.0	0.5	2.7	0.8	97.7	83.9	95.9	99.3	99.3	99.3	99.6	99.7	99.6
BLAST	96.1	88.9	94.2	3.0	7.0	4.5	87.1	58.9	76.7	96.7	90.9	96.0	99.7	96.8	99.0
universal	100	99.8	99.9	3.4	9.4	5.3	99.7	93.4	99.0	100	99.9	100	100	100	100
unique	98.5	97.3	98.2	1.0	3.9	2.2	95.4	82.6	89.0	99.0	99.1	99.1	99.5	99.6	99.5

The subcolumns with the name C, W, and A refer to the corresponding percentage for the USCGs from Creevey et al., Wu et al., and Alneberg et al., respectively.

Metagenomic shotgun sequencing

https://www.france-genomique.org/technological-expertises/metagenomics/shotgun-metagenomics/?lang=en

Shotgun reads in metagenomics

Sanger sequencing ~1000bp long reads, 99.99

454 pyrosequencing typically produces ~400 bp reads

Illumina MiSeq produces 200-600bp reads (depending on whether paired end options are used),

Ion Torrent PGM System ~400 bp reads

Pacific bioscience 10 to 25kb, 99.9% accuracy

Oxford Nanopore minION flow cell R10.4, 10-25kb, 99% accuracy

HiFi reads from PacBio

A simple math

How many species can we sequence in a instrumental run of Illumina sequencing (800 Gb)?

- 1. Each species is 1Mb long, coverage 1X
- 2. Each species is 3Mb long, coverage 100X

The Human Microbiome

What does the data look like

What computational questions can be asked with the data

What computational questions can be asked with the data

Strain genome reconstruction

https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa728/5893551

Other questions can be asked?

antimicrobial peptides

https://www.nature.com/articles/s41587-022-01226-0

https://ieeexplore.ieee.org/document/9293366

virus

Microbial Interaction

https://asm.org/magazine/2023/spring/friends-foes-microbial-interactions-infections

Genome Assembly

http://www.chromnet.net/Genome%20De%20Novo%20Sequencing%20and%20Assembly.aspx https://www.researchgate.net/figure/Illustration-of-de-Bruijn-graph-based-assembly_fig1_229437536

Troublesome Repeats

• Insert non-maximal reads whenever unambiguous

Paired-end reads and Repeats

Challenges in Metagenomic Assembly

Mixed reads

Horizontal gene transfer

Highly conserved genes

Uneven sequencing coverage

PubMed Central, Table	1: PLoS One. 2017; 12(1): e01696	i62. Published online 2017 J	an 18. doi: [10.1371/joun	nal.pone.0169662] - Mozilla Firefox

🛈 🔀 🔒 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242441/table/pone.0169662.t001/?report=objectonly

Table 1

Overview and basic characteristics of currently used and freely available short read metagenome assemblers.

Included are basic characteristics influencing the user friendliness, such as the range of accepted input formats or extent of documentation. The number of total and recent citations indicates the past and present popularity as well as dissemination of the respective tool within the scientific community.

short read assembler	version	last release	Method	input seq format	read pair format	multiple libraries	extensive instructions available	Support	summary of user friendliness	Citations (total/2016)
IDBA-UD	1.1.2	2014	de Bruijn multiple K-mer	.fasta	interleaved only	yes	no	GitHub tickets, email	inflexible, incomplete documentation	481/189
MegaHit	1.0.3	2015	de Bruijn multiple K-mer	. fastq, . fastq.gz, . fasta, . fasta.gz, stóin	interleaved or	yes	yes	GitHub tickets, email	simple usage, flexible, well	59/39
					separate				documented	
MetaVelvet	1.2.01	2012	de Bruijn single K-mer	.fastq, .fastq.gz, .fasta, .fasta.gz, .sam, .bam,	interleaved or	yes	yes (mostly for velvet)	mailing list, email	flexible, well documented	187/72
				.stdin	seperate					
MetaVelvet-SL	1.0	2015	de Bruijn single K-mer	. fastų, . fastų gz, . fasta, . fasta gz, . sam, . bam,	interleaved or	yes	no	email	Convoluted workflow, flexible	16/11
			, °	.stdin	seperate					
Ray Meta	2.3.1	2014	de Bruijn single K-mer	.fasta, .fasta.gz, .fastq, .fastq.gz	interleaved or	yes	yes	GitHub tickets, email	flexible, well documented	192/73
,					separate	,	,	,	,	
SOAPdenovo2	2.01	2015	de Bruijn single K-mer	.fastq, fastq.gz, .fasta, fasta.gz, .bam	interleaved or	yes	yes	GitHub tickets, email	well documented	938/334
20M-0010002	2.01	2015	ac praju sugic re-inci	. тазиу, тазиу, ди, . тазиа, тазиа, ди, . оаш	seperate	ycs	ycs	om no acces, enan	wei abeamenea	900 JJ4
0	100	2014	01	Cata Cata	•			3	······	21/12
Omega	1.0.2	2014	String graph prefix + suffix hashtable	. fastq, .fasta	interleaved only	10	yes	email	simple usage, well documented	21/13
metaSPAdes	3.8.0	2016	de Bruijn multiple K-mer	. fastų, . fastų gz, . fasta, . fasta,gz, . bam	interleaved or	no	Yes	Sourcefourge/GitHub tickets, mailing list,	flexible, well documented	5/5
			<i>·</i> ·		seperate			email		

https://www.nchi.nlm.nih.gov/nmc/articlas/DNACE2A2AA1/

Assembly

... 🗵 ☆ 🗉

Long and short read hybrid assembly

https://en.wikipedia.org/wiki/Hybrid_genome_assembly

Current Status

For difficult regions (repeats or highly conserved regions)

-STAR partially recovered 102 (78%) of 131 16S sequences. The hybrid assemblers GATB (mean completeness 60.1%) and OPERA-MS (mean 47.1%) recovered the most complete 16S sequences. Mean completeness for short-read assemblies ranged from 29.6% (HipMer) to 36.9% (MEGAHIT)

https://www.nature.com/articles/s41592-022-01431-4/figures/1

Binning

sample

Binned reads

- Short reads length
- Sequencing errors
- high-throughput data

Current approaches

Taxonomy-dependent methods:

Alignment-based binning (MEGAN)

http://ab.inf.uni-tuebingen.de/software/welcome.html/megan5

Composition-based binning (Kraken)

Kraken Taxonomic Sequence Classification System

https://ccb.jhu.edu/software/kraken/

Problems in taxonomy-dependent methods

MBMC works better for datasets that contain unknown species

Taxonomy-independent methods

AbundanceBin, MetaCluster

the difference of k-mer (short sequence with length k) frequencies of different microbes in the environmental samples

Observations:

- k-mer frequency genome's coverage
- Iong k-mers are usually unique in each genome
- k-mer frequency distribution from the same genome are similar

Problems in taxonomy-independent methods

>AbundanceBin/MetaCluster: only utilize the k-mers frequency.

→MBBC: improve the method to utilize the k-mer frequency; utilized Markov properties shared by a group of reads

Results1 MBBC reliably estimates the species number, genome sizes, relative species abundances, and k-mer coverage

A. Initial prediction of α , λ												
Initial	1	2	3	4	5	6	7	8	9	10		
Species												
α	43.30%	22.97%	11.07%	20.84%	1.16%	0.51%	0.12%	0.03%	6 0.00%	0.00%		
λ	3.88	11.14	16.57	23.61	38.71	51.62	74.22	105.3	7 158.79	329.53		
B. Prediction after updating #k-mers that occur 0 to 3 times												
α	31.59%	16.01%	25.79%	24.33%	1.38%	0.72%	0.14%	0.03%	6 0.01%	0.00%		
λ	3.34	6.67	13.05	22.98	35.61	49.23	72.22	103.4	5 156.95	328.64		
C. Prediction after removing small groups of k-mers												
Genome	3009885	660737	1005524	948301	53786	27871	5352	1249	197	36		
size												
α	31.59%	16.01%	25.79%	24.33%	1.38%	0.72%	0.14%	0.03%	• 0.01%	0.00%		
λ	3.34	6.67	13.05	22.98	35.61	49.23	72.22	103.4	5 156.95	328.64		
D. Prediction after iteratively binning read based on Markov chains: Predicted (real data)												
Predicted Species		1		2		3			4			
Genome size				825923 (945296)		1138156 (1107344)			1212248 (1075140)			
Genome size	e	1498994 (11	60554)	825923 (9	45296)	1138156	6 (1107344	1)	1212248 (107	75140)		

6.67 (5.83)

13.05 (12.48)

22.98 (20.52)

MBBC: an efficient approach for metagenomic binning based on clustering BMC Bioinformatics. 2015;16(1):36.

3.34 (3.49)

λ

Contig Binning

Preprocessing

Samples from multiple sites or times

² Metagenome libraries

Initial de-novo assembly using the combined library

MetaBAT

Calculate TNF for each contig

Calculate Abundance per library for each contig

Calculate the pairwise distance matrix using pre-trained probabilistic models

Forming genome bins iteratively

https://pubmed.ncbi.nlm.nih.gov/26336640/

Concoct

Tetramer frequency (V= 136 tetramers)

Normalized Coverage of a contig across M samples

Total coverage of a contig across M samples

Dimension reduction by SVD on all N contigs' Log M+1+V vectors to account for >90% variation of the vectors, then apply Gaussian mixture decomposition to obtain different MAGs.

https://pubmed.ncbi.nlm.nih.gov/26336640/

Taxonomic Analysis

https://www.nature.com/articles/s41467-021-21295-0

https://www.nature.com/articles/s41587-023-01688-w

Other metagenomic data

metatranscirptomics

metaproteomics

Single cell metagenomics

Hi-C