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abstract

Motivation: Recently, in many genome sequencing projects, people have used
double-end clones. This paper is concerned with predicting genome coverage in these
projects. The Lander-Waterman formula can only address the statistical properties
for the assembly projects using clones without “mate-pairs”. There is a need to
extend the Lander-Waterman formula to cover double-end genome sequencing.
Results: We improve prior results and calculate the average number and length
of scaffolds, islands, and gaps; estimate the average number of islands in a scaffold;
and so on. In addition, we estimate the distribution of the gap size between adjacent
islands.
Contact: xiaomanl@usc.edu. Tel: (213)740-0778. Fax: (213)740-2424.
keywords: DNA sequencing, double-end clone, scaffold, island, Poisson process,
Lander-Waterman formula.

1. Introduction

There are so many repeats in the human and other genomes that scientists have
used the double-end clone strategy to “walk” through them (Venter et al., 1998;
Webber and Myers, 1997). This makes it possible to sequence many genomes but
many complex problems in the assembly process have arisen. One is to understand
the stochastic process of the assembly by using double-end clones.

In 1995 Port et al. addressed some statistical problems about double-end clone
mapping and sequencing strategies. In that paper, the authors attempted to extend
the Lander-Waterman formula; i.e., they wanted to estimate the average length
and the average number of scaffolds, of islands, of gaps, and the average number of
islands and gaps in a scaffold, and so on, for the double-end clone strategy. (Scaffolds
are clones connected via mate-pairs or double ends). That paper established some
results and posed the problem rigorously. But neither their greedy island method
nor their block-island method can give a good description of scaffolds, such as the
average number and length of scaffolds, even for length-fixed clones with length-fixed
ends. Exactly because of the complexity of the problem, people such as Roach et
al. (Roach et al., 1995; Siegel et al., 2000) used simulations to get some idea about
the result of assembly by using double-end clones.

In 1999, Ru-Fang Yeh improved Port et al.’s results very much in her thesis by
assuming the lengths of clones and ends are random variables. First, she made
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a correction for the Lander-Waterman formula by adding a term to describe the
boundary effects which are important in high-coverage cases (i.e. the previous for-
mula estimates the island number as 0 when the coverage is infinite). Then she
gave a very good approximation to the average number of the scaffolds, although
there are some errors in the arguments. In addition, she gave some other formulae
to estimate other quantities mentioned above.

As did Port et al, Yeh advanced the state of knowledge. However, only the average
number of scaffolds is reliable. This will be discussed in detail later. In this paper,
we will study the estimation of scaffolds, islands and gaps. Our study is intended
for genome sequencing projects.

2. Estimation for double-end clone strategy

2.1. Basic Concepts and Notations. By double-end clones, we mean clones
where we sequence the two ends, about 500bp at each end, say, instead of sequencing
just one fragment. The sizes of clones Celera used in their human genome project are
approximately 2kb, 10kb and 50kb (Venter et al., 2001). By the double-end clone
strategy, we mean the method in which a double-end clone library is constructed,
and random clones are chosen for their clone ends to be sequenced. Then scientists
try to assembly those clones to cover the whole genome. Here and in the following,
we will use ends to mean the leftmost and the rightmost parts of the clones (in
reference to a genome sequence) that have been sequenced. By scaffolds, we mean
a set of clones, any two of which are connected by direct or indirect overlaps of
ends. Of course, there may be many gaps in a scaffold. By islands, we mean a
set of ends that are connected with each other by direct or indirect overlaps (not
using double-end connections). Thus, there is no gap in an island. By gaps, we
mean those regions that are between two adjacent islands that are not covered by
the clone ends.

Now, we have the following notation:

G= genome length;
N = number of clones;
E = the average length of ends;
L = the average length of clone;
T = length of common substrings needed to detect overlap;

θ = T
L
; λ = N

G−L+1
; coverage

�
= 2NE

G
;

Lt is the clone starting at t or its length, t ∈ (0, G);
F (•) = the distribution function of the length of clones;
Etl is the length of the left end of the clone Lt, t ∈ (0, G);
Etr is the length of the right end of the clone Lt, t ∈ (0, G);
G(•) = the distribution function of the length of ends of clones.

2.2. Previous Work. In Port et al.’s paper (Port et al., 1995), they studied
length-fixed double-end clones with length-fixed ends by two methods. The following
is one of their approximations.
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p(t)
�
=Pr(a scaffold ends at t|a clone ends at t)

≈Pr(no other clone ends after t with left end overlapping with

either end of the clone ending at t|a clone ends at t )

The approximation defined above is easy to calculate since we model the leftmost
positions of clones as a Poisson process (Waterman, 1995). But the result of p(t) =
e−3λE in Port et al. is too imprecise to be a good estimator.

Keeping this definition in mind, and assuming the length of clones and ends are
random variables with known distribution, Yeh (Yeh, 1999) defined

p(t)
�
=Pr(a scaffold starts at t|a clone starts at t)

≈Pr(A|a clone starts at t) + Pr(AcB|a clone starts at t)

Where

A ={no clone starts before t and ends after t};
B ={both the clone in Ac and the clone Lt do not overlap with

the end of any other clone beginning after t and before t + Lt − Etr};
and of course Ac is the complement of the set A. Note that the two equations for
p(t) above describe the same thing although one considers the end of a scaffold while
the other considers the start of a scaffold.

Although the approximation by Yeh avoids the most difficult parts in calculating
p(t) exactly1, it is good enough for application. Her calculation resulted in the
following formula:

(1) p(t) ≈ e−λL + e−5λE(e−αλE − e−λ(L−3E))(2 − e−βλE)

where
Pr(A|a clone starts at t) ≈ e−λL,

P r(Ac| a clone starts at t) ≈ e−3λE(e−αλE − e−λ(L−3E)),

P r(B|Ac and a clone starts at t) ≈ e−2λE(2 − e−βλE),

and β and α are two constants determined by the length distribution of clones and
ends (Yeh, 1999).

Then, by adding a correction item for the left boundary 0, Yeh obtained

(2)

E(number of scaffolds)

≈1 − e−λL + Np(t)

≈1 − e−λL + N [e−λL + e−5λE(e−αλE − e−λ(L−3E))(2 − e−βλE)].

Equation (2) is such a good estimation for the average number of scaffolds in
that it agree with our simulation results2 very well when coverage is larger than 2;

1See Figure 2 and the paragraph after equation 2.
2Our simulation parameters are as follows. The genome length is 80kb. There are two clone

lengths, one of that is 5kb, the other 2kb. Each clone length accounts for 50% of the total number
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Figure 1. (a)Average number of scaffolds as a function of cover-
age.(b)Average length of scaffolds as a function of coverage.

see Figure 1(a). But there are some problems with the calculation. First, when
considering event B, only those clones with left end overlapping with the ends of
Lt or the right end of the clone in Ac, such as Ls1 in Figure 2(c), are included.
So the estimate neglects those clones such as Ls2 in Figure 2(c). Second, when
calculating Pr(B|Acand a clone starts at t ), Yeh (Yeh,1999) only considered those
clones starting before t and ending before t + Lt, such as Ls1 in Figure 2(a), and
neglected those starting before t and ending after t + Lt, such as Ls2 in Figure 2(a).
Third, there may be many clones in Ac, such as Ls1, Ls2, Ls3 in Figure 2(b), and all
of them should be included. But Yeh’s argument is based on the assumption that
there is only one clone in Ac.

Yeh also tried to estimate the average length of scaffolds, the average length of
gaps and the average number of islands in a scaffold. But those estimations are not
of good quality. We will show the comparison of Yeh’s and ours in detail later.

2.3. Our Estimates.

2.3.1. Average Scaffold Number. We define the following sets.

S1
�
={clone Ls|s < t < t + Etl < s + Ls − Esr < s + Ls < t + Lt − Etr}

S2
�
={clone Ls|s < t < t + Lt < s + Ls − Esr}

As we pointed out above, the clones in Ac belongs to S1
⋃

S2. Yeh (Yeh,1999) only
considered the clones in S1. We now consider the clones in S2.

For given Lt, it is possible that |S1| > 1 or |S2| > 1. Although we know it is wrong
to think there is only one clone in S1 as Yeh (Yeh,1999) did, we will follow that
method of calculation because it is difficult to analyze what happens between those
clones and Lt. For instance, in Figure 2(b), there are only three clones. We have
to use triple integral to calculate Pr(Ac

⋂
B

⋂
S1|a clone starts at t). It is difficult

of clones. The length of the ends is fixed as 500bp. We also assume T to be 25bp for detecting
overlap. For each point on the graph, we simulated 3000 times and got the average.
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Figure 2

enough when there are more than three clones. So we will assume there is only one
clone in Ac

⋂
B

⋂
S2 when we calculate Pr(Ac

⋂
B

⋂
S2|a clone starts at t).

Assume Lt means the event that a clone starts at t. First we calculate

p1
�
= Pr(S1|Ac, Lt)

=

∫ t

−∞ Pr(s + Esl < t < t + Etl < s + Ls − Esr < s + Ls < t + Lt − Etr)ds∫ t

−∞ Pr(Ls ∈ Ac, Lt)ds

=
E

∫ ∞
0

G(u)[F (u + Lt − Etr) − F (u + Esr + Etl)]du

E
∫ ∞

0
G(u)[F (u + Lt − Etr) − F (u + Esr + Etl) + 1 − F (u + Lt + Esr)]du

where E, which is different from the E we defined in section 2.1, means get the
operation to get the expectation of the corresponding expressions.

Using Yeh’s (Yeh,1999) calculation of Pr(Ac|Lt), we have

Pr(Ac
⋂

B
⋂

S1|Lt) ≈p1 × Pr(Ac|Lt) × (2e−2λE − e−(2+β)λE),

P r(Ac
⋂

B
⋂

S2|Lt) ≈(1 − p1) × Pr(Ac|Lt) × (2e−2λE

− e−4λE+
∫ ∫ t+Lt

t+Lt−Etr
[1−G(s+Ls−Esr−x)dxdY (t−s)]),

where Y (·) is the distribution of t − s, as was stated in Yeh’s paper.
Therefore, replacing Pr(AcB|Lt) by the sum of the above two probabilities, we

have our estimate of p(t). Then we can get similar formula to estimate the number of
scaffolds by replacing Yeh’s p(t) in equation (2) by ours. The curve labelled “ours”
in Figure 1(a) uses our result.

2.3.2. Average Scaffold Length. In Port et al.’s paper (Port et al.,1995), they used
greedy islands to describe scaffolds. They do not obtain a good estimation of the
average scaffold number and scaffold length. Yeh used the following estimation:
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(3)

E(scaffold length) ≈
G(1 − e−λL)

1 − e−λL + N{e−λL + e−7λE[e−αλE − e−λ(L−3E)](2 − e−βλE)} .

Notice the numerator in (3) is the part of genome that has been covered by clones
and any region of the genome covered with two or more clones will be counted
only once. So for two scaffolds interlacing but without overlapping at the ends, we
should count their interlacing regions only once when we calculate the denominator
of (3). That is why the denominator is similar to that in (2). Comparing (3) with
(2), we can find that Yeh multiplied Pr(AcB|a clone starts at t) by e−2λE in (3).
Yeh used the clones in Ac not to be extended. This idea is correct. Unfortunately,
the argument omitted that some clones in Ac already can not be extended when
calculating Pr(B|Ac and a clone starts at t). Therefore, there is no need to multiply
by e−2λE for those clones. We believe it is better to use the following formula (4),
(5) or (6). Figure 1(b) is the comparison of (3), (4), (5) and (6) with simulation
results.

(4)

E(length of scaffolds)

≈ G(1 − e−λL)

1 − e−λL + Ne−λL + Ne−5λE(e−αλE − e−λ(L−3E))

(5)

E(length of scaffolds)

≈ G(1 − e−λL)

1 − e−λL + N [e−λL + e−5λE(e−αλE − e−λ(L−3E))(1 − e−βλE)]

(6) E(length of scaffolds) ≈ G(1 − e−λL)

1 − e−λL + Ne−λL + N(1 − e−(3+α)λE)Pr(AcB|Lt)

(4)-(6) are all based on one principle: we don’t want one scaffold contained com-
pletely in others to be counted. Note that our formula (4) is exactly what Yeh tried
to get. As to formula (5), we count the scaffold beginning from Lt if the clone Lt can
be extended. Our calculation strategy requires those scaffolds interlacing with the
one beginning from Lt and starting before t can’t be extended after Lt. Therefore,
we should count the scaffold beginning from Lt since most clones of the scaffold
are not contained by other scaffolds. If the scaffold beginning from Lt can not be
extended, it contains only one clone and shares some parts of the clone with other
scaffolds, and we have counted those in other scaffolds. So it is better for us to
neglect the rest of the clone.

We multiply Pr(AcB|a clone starts at t) by 1 − e−(3+α)λE in (6). Note that
1 − e−(3+α)λE is the probability that the clone Lt can be extended. If Lt can’t
be extended, it contains only one clone and some parts of the clone cover the same
region as the clones in the previous scaffold. It is not a large error to neglect those
scaffolds.
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In summary, (4), (5) and (6) are better estimations than (3). Moreover, we can
consider the event S2 as we did in previous section if we want to get even better
result. But the argument is similar. So we will not write out here.

2.3.3. The Average Number of Islands in a Scaffold. Since each island can belong
to only one scaffold, and we know how many scaffolds there are. In order to esti-
mate how many islands there are in a scaffold on average, we have to estimate how
many islands there are. Port’s estimation (Port et al.,1995) is 2Ne−2λE while Yeh
(Yeh,1995) claimed it was 1 + Ne−2λE. It is certain that Port’s answer is correct,
but we should add 1 − e−λE as a correction due to the boundary effect. Later, we
will show how to obtain 2Ne−2λE by using the distribution of gap size.

The following is the estimation of the average number of islands in a scaffold. (7)
is Yeh’s result while (8) is ours. Figure 3(a) gives a comparison between the two
estimated.

(7) E(number of islands in a scaffold) ≈ 1 + Ne−2λE

(2)

(8) E(number of islands in a scaffold) ≈ 1 − e−2λE + 2Ne−2λE

(2)
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Figure 3. (a)Average number of islands in a scaffold as a function
of coverage.(b)Average island length in a scaffold as a function of
coverage.

2.3.4. Average Island Length and Gap Size. For any position in the genome, say t,
the probability that no end covers t is e−2λE, where the factor of 2 is due to the fact
that either left or right ends can cover t. Therefore, G(1− e−2λE) of the genome has
been covered. (We can get also this formula from the distribution of gaps instead
of Port et al.’s method). It is easy to obtain the following formula:

E(length of islands) ≈ G(1 − e−2λE)

(2)(8)
,
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where the items in parentheses are the quantities in the corresponding equations.
Based on the same argument, we have

E(gap size in a scaffold) ≈
(5) − G(1−e−2λE)

(2)

(8) − 1

For the gaps between adjacent islands, we obtain the following estimation.

E(gap size between adjacent islands) ≈ Ge−2λE

1 + (2N − 1)e−2λE

Figure 3(b) is a comparison of different estimations of the island length. Figure 4(a)
is a comparison of different estimations of gap size between adjacent islands in a
scaffold. Figure 4(b) is a comparison of different estimations of gap size between
adjacent islands, where the curve labelled with “gapsize1” is the line for last formula
above.
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Figure 4. (a)Average gap size between adjacent islands in a scaffold
as a function of coverage.(b)Average gap size between adjacent islands,
which may belong to different scaffolds, as a function of coverage.

2.3.5. Contig Scaffolds. By contig scaffold, we mean those scaffolds composed of
at least two clones. The counterpart of contig scaffold is singleton scaffold. By
singleton scaffold, we mean those scaffolds containing only one clone. Define r(t)
as Pr(no other clone overlap with the ends of the clone Lt|a clone starts at t). It is
easy to get r(t) = e−(6+2α)E, as can be found in Yeh, 1999. Therefore, the number
of singleton scaffolds is Nr(t) + (1 − e−λL)r(t), where (1 − e−λL)r(t) is a correction
for the boundary. And the length of genome that has been covered by singleton
is [Nr(t) + (1 − e−λL)r(t)]L. Therefore, we have the following formulae for contig
scaffolds (Only formula (10) appears in Yeh (Yeh,1999)):

(9) E(number of contig scaffolds) ≈ (1 − e−λL)[1 − r(t)] + N [p(t) − r(t)].
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(10)

E(contig scaffold length) ≈
G(1 − e−λL) − [Nr(t) + (1 − e−λL)r(t)]L

(1 − e−λL)[1 − r(t)] + N [e−λL + e−5λE(e−αλE − e−λ(L−3E))(1 − e−βλE)]
.

(11)

E(number of islands in contig scaffold) ≈ (1 − e−2λE)(1 − r(t)) + 2Ne−2λE[1 − r(t)]

(9)
.

(12) E(length of islands in contig scaffold) ≈ G(1 − e−2λE) − 2Nr(t)E

(9)(11)
.

(13)

E(gap size of contig scaffold) ≈
G(1−e−λL)−[Nr(t)+(1−e−λL)r(t)]L

(9)
− G(1−e−2λE)−2Nr(t)E

(9)

(11) − 1
.

The above formulae are good only when the coverage is larger than 3. Figure 5
contains the comparisons of those formulae with simulation results.
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Figure 5. (a)Average number of contig scaffolds. (b)Average length
of contig scaffolds. (c)Average number of islands in a contig scaffold.
(d)Average gap size in a contig scaffold.(e)Average island length in
contig scaffolds.
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3. The Distribution of Sizes of Gaps between Adjacent Islands

There are two types of gaps. Gaps occur between adjacent islands or between
adjacent islands in a scaffold. We are interested in the former here.

Assume L̄ is the exact lower bound of the length of clones. Also assume the length
of the ends is not larger than L̄. Let A ={A gap beginning from 0 and with width
≥ x }, B={there is a clone ending at 0}. We want to calculate Pr(A|B). For A
occurring under the condition B, we need C1,C2 and C3, i.e.,

Pr(A|B) = Pr(C1,C2 and C3|B) = Pr(C1|B)Pr(C2|B)Pr(C3|B),

where

C1
�
={all clones with left ends starting in(−∞,−L̄)can’t have right ends

overlapping with the interval(0, x)}
C2

�
={all clones with left ends starting in (−L̄, 0) can’t have left ends

overlapping with (0, x) and must have right ends in (x, +∞)}
C3

�
={no clone happens with left end beginning in (0, x)}

By using the thinning Poisson process idea, we calculate Pr(C1|B) in the following
way. We calculate the probability that the clone Lt has its right end overlap with
(0, x) for any t < −L̄. We write this probability as Ṕ (t). Then

Ṕ (t) =Pr(t + Lt > 0, t + Lt − Etr < x)

=Pr(−t < Lt < x + Etr − t)

≈
∫

[F (x + y − t) − F (−t)]dG(y)

Therefore, we have Pr(C1|B) ≈ e−λ
∫ ∞
0

∫ −L̄
−∞[F (x+y−t)−F (−t)]dtdG(y). Similarly, we have

Pr(C2|B) ≈ e−λ
∫ ∞
0

∫ 0
−L̄{1−G(−t)+G(−t)[F (x+y−t)−F (−t)]}dtdG(y);

Pr(C3|B) ≈ e−λx;

Recall what we calculated was the probability that there is a gap after a read,
including the case of gap width 0. Therefore, in order to get the distribution of
the gaps after an island, we have to multiply the above probabilities by a constant,
which is the probability that there is no gap after the position zero given there is a
clone ending at zero.

If we assume the length of the ends are fixed as E, we know L̄ is 2E. If we assume
x = 0, we have

Pr(C1|B) ≈e−λ
∫ L̄+E

L̄ [1 − F (t)]dt,

Pr(C2|B) ≈e−2λL̄−λ
∫ 2E

E [1−F (t)]dt+λ
∫ L̄+E

L̄
[1−F (t)]dt,

P r(C3|B) ≈1.
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Therefore,we know the probability there is no gap after a clone is e−2λE in this case.
Actually, this is always correct if the average length of ends is E.

We can use the above formula to calculate the average gap size. The line labelled
with “gapsize2” in Figure 6 is the line.

4. Discussion and Conclusion

In this paper, we have made improvement in the formulae predicting aspects of
double-end (or mate-pair) clone DNA sequence assembly. In particular, we present
formulae for the average number and length of scaffolds, islands, and gaps; and
estimate the average number of islands in a scaffold, and so on. In addition, we
estimate the distribution of the gap size between adjacent islands.

It is necessary to make approximations. We and Yeh both assume there is only
one clone in Ac when calculating the average number of scaffolds. From simulations,
we know the probability that two scaffolds share a region with width longer than
the length of one clone is very small, when coverage is larger than 2.5. In future
work we hope to add rigorous bounds on this and other approximation errors.

In our calculation of average scaffold number, we included clones such as LS2

instead of only the clones such as LS1; see Figure 2(a) and Figure 2(c). From Figure
1(a), we can only see a little improvement. But if we use a mixture of very different
clone sizes, such as Celera used, in our preliminary simulations, our result seem to
be much better than Yeh’s. We will study this further.

In summary, our estimators appear to behave well. We have not checked our
model against the output of sequence assemblers because assembled sequence is the
result of numerous and complex operations. This is in our future plans.

It was our goal to provide guidance for the design of sequencing project, and we
have not yet fully succeeded in this. Because assembly depends on more complex
details of the island-scaffold structure than what we have obtained, our future success
will depend on further analysis.
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