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Abstract— In this paper, we show how genetic algorithms can
be useful in enhancing the performance of clustering algorithms
in mobile ad hoc networks. In particular, we optimize our re-
cently proposed weighted clustering algorithm (WCA). The prob-
lem formulation along with the parameters are mapped to indi-
vidual chromosomes as input to the genetic algorithmic technique.
Encoding the individual chromosomes is an essential part of the
mapping process; each chromosome contains information about
the clusterheads and the members thereof, as obtained from the
original WCA. The genetic algorithm then uses this information to
obtain the best solution (chromosome) defined by the fitness func-
tion. The proposed technique is such that each clusterhead han-
dles the maximum possible number of mobile nodes in its cluster
in order to facilitate the optimal operation of the medium access
control (MAC) protocol. Consequently, it results in the minimum
number of clusters and hence clusterheads. Simulation results ex-
hibit improved performance of the optimized WCA than the orig-
inal WCA. Moreover, the loads among clusters are more evenly
balanced by a factor of ten.

Index Terms—ad hoc networks, clustering, genetic algorithms,
performance optimization

I. INTRODUCTION

Mobile multi-hop radio networks, also called ad hoc or peer-
to-peer networks, play a critical role in places where a wired
(central) backbone is neither available nor economical to build,
such as law enforcement operations, battle field communica-
tions, or disaster recovery situations. This multi-cluster, multi-
hop packet radio network architecture for wireless systems
should be able to dynamically adapt itself with the changing
network configurations. Certain nodes, known as clusterheads,
are responsible for the formation of clusters, each consisting of
a number of nodes (analogous to cells in a cellular network),
and also for the maintenance of the network topology. The set
of clusterheads is known as a dominant set. A clusterhead does
the resource allocation to all the nodes belonging to its cluster.
Due to the dynamic nature of the mobile nodes, their associa-
tion and dissociation to and from clusters perturb the stability
of the network and thus reconfiguration of clusterheads is un-
avoidable. Thus, it is desirable to have a minimum number of
clusterheads that can serve the network nodes scattered evenly
in the area. An optimal selection of the clusterheads is an NP-
hard problem [1], [2]. Therefore, various heuristics have been
designed for this problem (e.g. [1], [5]).

In this paper, we apply genetic algorithms (GA) as an opti-
mization technique to improve the performance of clusterhead
election procedure. In particular, we optimize our recently pro-
posed weighted clustering algorithm [4], [5]. GAs are defined

as search algorithms that use the mechanics of natural selection
and genetics such as reproduction, gene crossover, mutation as
their problem-solving method. The goal is to be able to find
out a better solution in the form of new generations that have
received advantages and survival-enhancing traits from the pre-
vious generations [3], [7], [9]. An artificial-life simulation is
created where survival of the fittest logic is applied for the string
structures that are the living organism equivalent in real world.
Even though the representation is structured, there is a random-
ization in data exchange to simulate the evaluation of real life
forms. As each generation brings up a new set of strings by dif-
ferent combination of bits of pieces of the previous generation,
the results are not guaranteed to come up with a generation that
has a better fitness value but by performing different genetic
operations, the probability of achieving the desired results is
increased. As characteristics of an organism in encoded in a
strand of DNA, genetic algorithms try to do the same in elec-
tronic genotypes that are basically just strings of bits. This bit
representation can be in the form of 1’s and 0’s or some other
form depending on the application it represents. It could so
happen that binary numbers could not be sufficient enough to
represent rather more complex information, behavior or char-
acteristic. In such cases, other encoding methods are used to a
string to fully and uniquely represent the data.

One of the essential factors of evolution is mutation. There
is no guarantee that the results of a reproduction will carry
traits that are fitter to survive. There could be several either
predictable or unpredictable characteristics found in the new
generation. In genetic algorithms, mutation is achieved by ran-
dom alteration of a bit in the genotype. Given a certain rate,
frequency of this alteration can be different for various applica-
tions. Another important factor in genetic algorithms is the ro-
bustness, which is defined to be the balance between efficiency
and efficacy needed to survive in various environments [7]. For
instance, this concept could be in the form of improving the cost
efficiency of a company’s product line in the same environment.
These concepts are also especially of importance where one can
test the efficacy of a suggested solution as many times as pos-
sible, often in the figure of hundreds of thousands of times [3].
This is why genetic algorithms are not used for testing of how
well life-dependent processes work. For example, one would
not use this application to make suggestions to a surgeon be-
cause the fact that in case of a bad suggestion the patient could
suffer the consequences and the algorithm would learn from the
training. The objective function (or the desired outcome) for a
given application would be to achieve improvements to an ex-



isting solution already in hand or simply finding a solution to a
complex problem.

The rest of the paper will show how GA based techniques
can be applied to clustering algorithms that would further en-
hance the performance of such algorithms. In particular, we
will apply the GA technique to Weighted Clustering Algorithm
(WCA) [4], [5] and demonstrate its performance improvement
with respect to the number of clusters, reaffiliations, and domi-
nant set updates. The optimized version of WCA also balances
the loads among clusters which is as much as ten times better
than the original WCA.

II. OPTIMIZING A CLUSTERING ALGORITHM

Let us briefly summarize the Weighted Clustering Algorithm
(WCA) which selects the clusterheads based on the weight ���
of each node � . As detailed in [5], ��� is defined as

� ���
	����� + 	������ + 	������ + 	������
where �� is the degree-difference, ��� is sum of the distances
of the members of the clusterhead, ��� is the average speed of
the nodes, and ��� is the accumulative time of a node being a
clusterhead. The corresponding weighing factors are such that� �  "! � 	  �$# . That node � with the minimum � � is chosen to
be the clusterhead. Once a node becomes a clusterhead, neither
that node nor its members can participate further in the cluster
election algorithm. The algorithm terminates once all the nodes
either become a clusterhead or a member of a clusterhead. All
the clusterheads are aware of their one-hop neighbors as well as
the ordinary (non-clusterhead) nodes know their clusterheads.
Please refer to [5] for complete details of WCA.

A. Problem Statement

We propose to optimize WCA such that the clusterheads
(dominant set) is minimized while load in the network is evenly
balanced among the clusters. In order to have a smaller num-
ber of clusterheads, each clusterhead must serve the maximum
possible number of nodes within their clusters. By balancing
the nodes among the clusters, we also assure that the lifetime of
individual nodes will be increased accordingly as none of the
nodes will use their processing and/or battery power more than
necessary. The goal of GA is to choose the one with the low-
est fitness value to be the best chromosome in that population
for that generation. As Elitist model of GA is used, the index
of the chromosome in the population will be saved to pass on
the next generation as the genetic algorithm performs crossover,
mutation and replacement.

B. GA Operations

We show how the following genetic operations are used in
our approach. For more details on these operations and related
concepts, refer to [7], [9].

Encoding of the data: This is also called a string represen-
tation of the given data which would be the nodes in the net-
work under consideration. All the nodes in the search space
should be present and have a unique representation. If there
is a one-to-one correspondence between the search space and
string representation, the design of the genetic operator would
be considerably less complex. As the number of nodes can be

randomly generated, it can be any number % for the given in-
stance. These unique IDs are used to encode the chromosome
using integer permutation as illustrated in Figure 2. Each chro-
mosome will be represented as a string of integers form where
each node ID is present and appears only once in the list as
shown in Figure 1.

Initial Population: Since genetic algorithms can perform cer-
tain tasks in parallel, the initial population should be generated
randomly. The population size is equal to what is called the
pool size in genetics which is generally problem dependent, but
it can also be found experimentally.

Selection: After the formation of the initial population, the fit-
ness value for each chromosome is computed. Since the weight�&� of each node was calculated from WCA’s selection proce-
dure, GA uses those values to sum up for all the clusterheads
for each chromosome. Since each chromosome has a differ-
ent set of clusterheads, the total fitness value for each chromo-
some will be different. According to the fitness values, Roulette
Wheel method is used for selection. Essentially in this method,
every chromosome is assigned a percentage value that is linear
to its fitness value.

Crossover: This is an essential operation despite the fact that it
may eliminate the optimal solution in rare cases. The purpose
is to have more diverse population. It is random in nature and
dependent on the rate specified which is best suited for a given
application and can be found experimentally. In this implemen-
tation, the X Order1 method is used [10] and the crossover rate
is chosen to be 0.8. In the X Order1 method, the offspring in-
herits the elements between the two crossover points, inclusive,
from the selected parent in the same order and position as they
appeared in that parent. The remaining elements are inherited
from the alternate parent in the same order as they appear in that
parent, beginning with the first position following the second
crossover point and skipping over all elements already present
in the offspring [6].

Mutation: This operation is performed to avoid premature con-
vergence by occasional random alternation of randomly deter-
mined bit in the given string with a specified rate. For the muta-
tion operator, we use a swap method with mutation rate of 0.1.
In this method, from the parent, we randomly select two genes
at position ' and ( , swap them to create the new child.

Replacement: Its purpose of using an append method is to save
the best strings into the next generation as it is possible to loose
the best solution while the reproduction process produce a new
set of solutions that replace the old (parent) solutions.

Elitism: The idea of using elitism is to update the current so-
lution (parent string) with the new solution (child string) if and
only if the new solution is better than the previous one.

Fitness value for chromosome: Compute the fitness value for
child 1 and child 2 (object func). This function is explained in
Cfit Value Algorithm which computes the objective function for
the fitness value.

C. Applying Genetic Algorithms

This section provides how the genetic algorithms are applied
to WCA to optimize the total number of clusterheads. As can be
seen in Figure 1, we have all the nodes along with their neighbor



list as well as the �)� values which are already calculated from
the execution of WCA algorithm. This is stored separately in
a list where each node is pointing to its neighbor(s) list as it is
next position that is used to compute the object function.
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Fig. 1. WCA intermediate results

Let us propose the following genetic algorithm steps that are
applied to the intermediate results of WCA.

Genetic Algorithms Steps
1) Initial Population: Randomly generate the initial popula-

tion with the pool size being equal to the number of nodes
in the given network. This will produce the same number
of chromosomes in the form of integer strings.

2) Repeat until requirements met: While new pool size *
old pool size, repeat steps 3 to 7. Repeat step 2 until the
number of generation or the convergence is met.

3) Selection: Apply Roulette Wheel method with fitness
values.

4) Crossover: Use X Order1 method.
5) Mutation: Use swap method.
6) Compute objective function: Compute the fitness value

of each chromosome in the population.
7) Replacement: Use append method.
8) Elitism. Check if the new children are better than the

current best. If so, replace the best by the child.
Since there are certain randomly generated predefined num-

ber, say % , of mobile nodes in the network, each of which has
a unique node ID in the range from 1 to % ; these node IDs
are used in the integer permutation to form string of integers as
encoding of a single chromosome. The initial population is per-
formed by generating the population randomly according to the
pool size. It is important to note that each of these strings con-
taining all the node IDs should not have any duplicate number;
achieving completeness and uniqueness characteristics. The or-
der in which the IDs are placed in the string should also be ran-
dom and not follow a certain pattern. This is shown in Figure 2.
Starting from the beginning, the algorithm goes through all the
nodes from the string in the order they appear and refers back to
the previous list obtained from WCA to find out the ��� values
for the selection of the clusterheads.

The algorithm goes through each node in this list and checks
three conditions in order to select the current node as a clus-
terhead. If the node under consideration is not already a clus-
terhead, and not a member of any of the clusterheads, and the
actual number of neighbors is less than the predefined threshold
value for + (maximum allowed number of neighbors a node can
have), that node is chosen to be a clusterhead and inserted into
the set of clusterheads for that particular chromosome. This is
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Fig. 2. Data encoded into chromosomes

shown in Figure 3. Since every node can be either a clusterhead
or a member of only a single clusterhead, the selected node and
its members are marked as deleted such that they would not be
part of the selection procedure anymore. After going through
the list once, a second run is performed for the purpose of find-
ing out whether any node is left unassigned since every node has
to be a member of a single clusterhead or a clusterhead itself.
After the clusterheads are chosen, the already calculated ���
values for each node is used to find out the fitness value of the
chromosome by taking the summation of ��� values of all clus-
terheads in this particular chromosome. It is important to note
that since the order of appearance of node IDs in the encoding
of the chromosomes are different, each chromosome will have a
different set of clusterheads which in return will have different
fitness values as computed by the following algorithm.
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Cfit Value Algorithm
1) The fitness value is equal to 0 at the beginning.
2) For each gene in chromosome repeat steps 3 and 4.
3) Assign node to be equal to gene [3]. If a node is not

already a clusterhead and is not already a member of an-
other clusterhead and its node degree is less than or equal
to MAX DEGREE (constant), assign this node to be a
clusterhead. Find out its ��� value (already computed
from WCA). Insert its node ID to the clusterhead set. Add
its �,� value to the fitness value of the chromosome it be-
longs to.

4) For the nodes that are leftover without any assignment,
loop through the entire chromosome one more time. If
a node is found that is not already a clusterhead and is
not already a member of another clusterhead and its node
degree is less than or equal to MAX DEGREE, assign
this node to be a clusterhead. Insert its node ID to the
clusterhead set. Add its �)� value to the fitness value of
the chromosome it belongs to.

We choose the append method that the new children will be



appended into the new pool. If the new children are better than
the best, replace the best by the child. This method is used to
prevent the solution from getting stuck at a local optima. The
solution is defined to be the solution of the best chromosome of
the last generation.

III. SIMULATION STUDY

We simulate a system of % nodes on a #�-.-�/�#0-.- grid. The
nodes could move in all possible directions with displacement
varying uniformly between 0 to a maximum value (max disp),
per unit time. In our simulation experiments, % was varied
between 20 and 60, and the transmission range was varied be-
tween 0 and 70. The nodes moved randomly in all possible
directions with a maximum displacement of 10 along each of
the coordinates. Every time unit, the nodes move a distance
that is uniformly distributed between 0 and max disp. In the
original WCA, we assumed that each clusterhead can at most
handle + � 10 nodes (ideal degree) in its cluster in terms of
resource allocation. Due to the importance of keeping the node
degree as close to the ideal as possible, the weight 	 � associ-
ated with  � was chosen high. The weights used for simula-
tion were 	 � �1-3254 , 	 � �6-3287 , 	 � �6-92 -;: and 	 � �<-32 -=: .
Note that these values are arbitrary at this time and should be
adjusted according to the system requirements. These are the
same values for all weighing factors used in the original WCA.
We have used LibGA [8] which is a library of routines written
in C for developing genetic algorithms. The GA parameters are
set/modified using a configuration file with no need to compile.

A. Performance Metrics

We compare the performance of WCA with three perfor-
mance metrics: (i) the number of clusterheads, (ii) the num-
ber of reaffiliations, and (iii) load balancing factor (LBF). The
number of clusterheads in the network defines the dominant set.
The reaffiliation count is incremented when a node gets disso-
ciated from its clusterhead and becomes a member of another
cluster within the current dominant set. The dominant set up-
date takes place when a node can no longer be a neighbor of
any of the existing clusterheads. These parameters are studied
for varying number of nodes ( % ) in the system, transmission
range and maximum displacement.

To quantitatively measure how well balanced the cluster-
heads are, we use a parameter called load balancing factor
(LBF) as defined in [4], [5]. The load handled by a cluster-
head is essentially the number of nodes supported by it. A
clusterhead, apart from supporting its members with the radio
resources, has also to route messages for other nodes belong-
ing to different clusters. It is difficult to maintain a perfectly
load balanced system at all times due to frequent detachment
and attachment of the nodes from and to the clusterheads. As
the load of a clusterhead can be represented by the cardinality
of its cluster size, the variance of the cardinalities will signify
the load distribution. We define the LBF as the inverse of the
variance of the cardinality of the clusters. Thus,>@?BA � C.D�
E.F"G EIHKJMLON
where PRQ is the number of clusterheads, S  is the cardinality
of cluster ( , and T �VU H C.DC D is the average number of neigh-
bors of a clusterhead ( % being the total number of nodes in

the system). Clearly, a higher value of LBF signifies a better
load distribution and it tends to infinity for a perfectly balanced
system.
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B. Experimental Results

Figures 4 and 5 show the reaffiliations per unit time with the
varying tx range for original WCA and optimized WCA, re-
spectively. For low transmission ranges, the nodes in a clus-
ter are relatively close to the clusterhead, and a detachment
is unlikely. There is an optimal transmission range for which
the reaffiliations are maximum. Further increase in transmis-
sion range decreases the reaffiliations since the nodes tend to
stay inside the large area covered by the clusterhead irregard-
less of movement of the nodes. For fewer number of nodes,
the reaffiliation count is lower for optimized WCA. Figures 6
and 7 show the average number of clusterheads with the vary-
ing max disp for original WCA and optimized WCA respec-
tively. We observe that the average number of clusterheads is
almost the same for different values of maximum displacement
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Fig. 8. Reaffiliations per unit time, tx range=30

since it simply results in a different configuration but the clus-
ter size remains the same. We observe that the optimized WCA
yields fewer number of clusters. Figures 8 and 9 show the reaf-
filiations per unit time with the varying max disp for original
WCA and optimized WCA respectively. As the displacement
becomes larger, the nodes tend to move farther from their clus-
terhead, detaching themselves from the clusterhead and caus-
ing more reaffiliations per unit time. The reaffiliation count has
considerably reduced for % �W7X- and Y - as depicted in Figure
9. Figures 10 and 11 show how the load balancing factor (LBF)
varies with time for original WCA and optimized WCA respec-
tively. We observe that after every dominant set update, there
is a gradual increase in the LBF. This is due to the diffusion of
the nodes among clusters. While the values of LBF has varied
between 0 and 0.06 in Figure 10, it went up to 0.6 in Figure 11
indicating that the GA based optimized WCA is ten times more
balanced.

IV. CONCLUSIONS

In this paper, we showed how genetic algorithms can be
applied to clustering techniques in mobile ad hoc networks.
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Weighted Clustering Algorithm (WCA) is one such algorithm
which can dynamically adapt itself with the ever changing
topology of ad hoc networks. We have mapped the possible so-
lutions given by original WCA to genetic algorithm technique
in order to find the better solution from a pool of solutions. Data
contained in the solutions are encoded into individual chromo-
somes to be used in the selection process. We applied GA
techniques to optimize the performance of WCA such that each
clusterhead handles the maximum possible number of nodes in
its cluster. The simulation results show that fewer clusterheads
are obtained by applying GA to WCA than the original WCA.
Also, the loads are more evenly balanced as can be seen from
the improvement in the load balancing factor.
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